#!/usr/bin/env python # Copyright 2016 Google Inc. All Rights Reserved. # Modifcations by dkoes. # More modifications by Alex P. """This is based on: https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/mnist/deployable/trainer/task.py It includes support for training and prediction on the Google Cloud ML service. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os.path import subprocess import tempfile import time import sys import csv from google.cloud import bigquery as bq from sklearn import preprocessing from scipy import misc import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.python.lib.io import file_io query_client = bq.Client() # Basic model parameters as external flags. flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.') flags.DEFINE_integer('batch_size', 20, 'Batch size.') flags.DEFINE_string('train_data_db', '[mscbiofin:eventdata.datamore4]', 'Directory containing training data') flags.DEFINE_string('start_date',19741210,'The Start time for training') flags.DEFINE_string('end_date',20161210,'The end date for training') flags.DEFINE_integer('hidden1', 1024, 'Number of units in hidden layer 1.') flags.DEFINE_integer('hidden2', 1024, 'Number of units in hidden layer 2.') flags.DEFINE_integer('hidden3', 1024, 'Number of units in hidden layer 3.') flags.DEFINE_integer('hidden4', 1024, 'Number of units in hidden layer 4.') flags.DEFINE_integer('hidden5', 1024, 'Number of units in hidden layer 5.') flags.DEFINE_integer('hidden6', 1024, 'Number of units in hidden layer 6.') flags.DEFINE_integer('hidden7', 1024, 'Number of units in hidden layer 7.') flags.DEFINE_integer('hidden8', 1024, 'Number of units in hidden layer 8.') flags.DEFINE_integer('hidden9', 1024, 'Number of units in hidden layer 9.') flags.DEFINE_integer('hidden10', 1024, 'Number of units in hidden layer 10.') flags.DEFINE_string('train_output_dir', 'data', 'Directory to put the training data.') flags.DEFINE_string('model_dir', 'model', 'Directory to put the model into.') # Feel free to add additional flags to assist in setting hyper parameters # Get labels by running sql queries. # Open the financial data and hold it in memory. def read_training_list(): """ Read /TRAIN which containing paths and labels in the format label, channel1 file, channel2 file, channel3 Returns: List with all filenames in file image_list_file """ image_list_file = FLAGS.train_data_dir + '/TRAIN' f = file_io.FileIO(image_list_file, 'r') #this can read files from the cloud filenames = [] labels = [] n_classes = len(labelmap) for line in f: label, c1, c2, c3 = line.rstrip().split(' ') #convert labels into onehot encoding onehot = np.zeros(n_classes) onehot[labelmap[label]] = 1.0 labels.append(onehot) #create absolute paths for image files filenames.append([ FLAGS.train_data_dir + '/' + c for c in (c1,c2,c3)]) return zip( labels,filenames),n_classes class Fetcher: '''Provides batches of images''' #TODO TODO - you probably want to modify this to implement data augmentation def __init__(self,stockfile): self.current = 0 self.cache = {} self.stocks = {} for row in csv.reader(stockfile,delimeter=','): date = row[0] date = int(date.replace("-","")) diff = float(row[4]) - float(row[1]) self.stocks[date] = diff def load_next(self): print("I want to get stocks[" + current + "]") #Implement a cache for mysql events = [] stockchange = 0 sys.exit(0); x_batch = [] y_batch = [] for i in xrange(batchsize): label, files = self.examples[(self.current+i) % len(self.examples)] label = label.flatten() # If you are getting an error reading the image, you probably have # the legacy PIL library installed instead of Pillow # You need Pillow channels = [ misc.imread(file_io.FileIO(f,'r')) for f in files] x_batch.append(np.dstack(channels)) y_batch.append(label) self.current = (self.current + batchsize) % len(self.examples) return np.array(x_batch), np.array(y_batch) def network(inputs): '''Define the network''' with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_initializer=tf.truncated_normal_initializer(0.0, 0.01), weights_regularizer=slim.l2_regularizer(0.0005)): net = tf.reshape(inputs,[-1, 512,512,3]) net = slim.conv2d(net, 32, [3,3], scope='conv1') net = slim.max_pool2d(net, [4,4], scope = 'conv1') net = slim.conv2d(net,64,[3,3], scope = 'conv2') net = slim.max_pool2d(net,[4,4], scope = 'pool2') net = slim.flatten(net) net = slim.fully_connected(net,64, scope = 'fc') net = slim.fully_connected(net, 13, activation_fn = None, scope = 'output') return net def run_training(): #Read the training data examples, n_classes = read_training_list() #TODO:Replace this np.random.seed(42) #shuffle the same way each time for consistency np.random.shuffle(examples) fetcher = Fetcher() # Tell TensorFlow that the model will be built into the default Graph. with tf.Graph().as_default(): # Generate placeholders for the images and labels and mark as input. x = tf.placeholder(tf.float32, shape=(None, 512,512,3)) y_ = tf.placeholder(tf.float32, shape=(None, n_classes)) # See "Using instance keys": https://cloud.google.com/ml/docs/how-tos/preparing-models # for why we have keys_placeholder keys_placeholder = tf.placeholder(tf.int64, shape=(None,)) # IMPORTANT: Do not change the input map inputs = {'key': keys_placeholder.name, 'image': x.name} tf.add_to_collection('inputs', json.dumps(inputs)) # Build a the network net = network(x) # Add to the Graph the Ops for loss calculation. loss = slim.losses.softmax_cross_entropy(net, y_) tf.scalar_summary(loss.op.name, loss) # keep track of value for TensorBoard # To be able to extract the id, we need to add the identity function. keys = tf.identity(keys_placeholder) # The prediction will be the index in logits with the highest score. # We also use a softmax operation to produce a probability distribution # over all possible digits. # DO NOT REMOVE OR CHANGE VARIABLE NAMES - used when predicting with a model prediction = tf.argmax(net, 1) scores = tf.nn.softmax(net) # Mark the outputs. outputs = {'key': keys.name, 'prediction': prediction.name, 'scores': scores.name} tf.add_to_collection('outputs', json.dumps(outputs)) # Add to the Graph the Ops that calculate and apply gradients. train_op = tf.train.AdamOptimizer(1e-4).minimize(loss) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Add the variable initializer Op. init = tf.initialize_all_variables() # Create a saver for writing training checkpoints. saver = tf.train.Saver() # Create a session for running Ops on the Graph. sess = tf.Session() # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.train.SummaryWriter(FLAGS.train_output_dir, sess.graph) # And then after everything is built: # Run the Op to initialize the variables. sess.run(init) # Start the training loop. for step in xrange(FLAGS.max_steps): start_time = time.time() # Fill a feed dictionary with the actual set of images and labels # for this particular training step. images, labels = fetcher.load_batch(FLAGS.batch_size) feed_dict = {x: images, y_: labels} # Run one step of the model. The return values are the activations # from the `train_op` (which is discarded) and the `loss` Op. To # inspect the values of your Ops or variables, you may include them # in the list passed to sess.run() and the value tensors will be # returned in the tuple from the call. _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict) duration = time.time() - start_time # Write the summaries and print an overview fairly often. if step % 1 == 0: # Print status to stdout. print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)) sys.stdout.flush() # Update the events file. summary_str = sess.run(summary_op, feed_dict=feed_dict) summary_writer.add_summary(summary_str, step) summary_writer.flush() # Export the model so that it can be loaded and used later for predictions. file_io.create_dir(FLAGS.model_dir) saver.save(sess, os.path.join(FLAGS.model_dir, 'export')) #make world readable for submission to evaluation server if FLAGS.model_dir.startswith('gs://'): subprocess.call(['gsutil', 'acl','ch','-u','AllUsers:R', FLAGS.model_dir]) #You probably want to implement some sort of model evaluation here #TODO TODO TODO def main(_): run_training() if __name__ == '__main__': tf.app.run()