| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
| |
This passes valgrind 100% clean for both helgrind and deep leak
checks. This represents a complete rethink of how the AIOs work,
and much simpler synchronization; the provider API is a bit simpler
to boot, as a number of failure modes have been simply eliminated.
While here a few other minor bugs were squashed.
|
| |
|
|
| |
block for any AIO completion.
|
| |
|
|
|
|
|
| |
The queue is bound at initialization time of the task, and we call
entries just tasks, so we don't have to pass around a taskq pointer
across all the calls. Further, nni_task_dispatch is now guaranteed
to succeed.
|
| |
|
|
|
|
|
|
|
| |
We need to remember that protocol stops can run synchronously, and
therefore we need to wait for the aio to complete. Further, we need
to break apart shutting down aio activity from deallocation, as we need
to shut down *all* async activity before deallocating *anything*.
Noticed that we had a pipe race in the surveyor pattern too.
|
| |
|
|
|
|
| |
Apparently there are circumstances when a pipedesc may get orphaned form the
pollq. This triggers an assertion failure when it occurs. I am still
trying to understand how this can occur. Stay tuned.
|
| |
|
|
|
|
|
|
|
|
|
| |
We have seen leaks of pipes causing test failures (e.g. the Windows
IPC test) due to EADDRINUSE. This was caused by a case where we
failed to pass the pipe up because the AIO had already been canceled,
and we didn't realize that we had oprhaned the pipe. The fix is to
add a return value to nni_aio_finish, and verify that we did finish
properly, or if we did not then we must free the pipe ourself. (The
zero return from nni_aio_finish indicates that it accepts ownership
of resources passed via the aio.)
|
| |
|
|
|
|
|
|
| |
We closed a few subtle races in the AIO subsystem as well, and now
we were able to eliminate the separate timer handling the MQ code.
There appear to be some opportunities to further enhance the code
for MQs as well -- eventually probably the only access to MQs will
be with AIOs.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This eliminates the two threads per pipe that were being used to provide
basic I/O handling, replacing them with a single global thread for now,
that uses poll and nonblocking I/O. This should lead to great scalability.
The infrastructure is in place to easily expand to multiple polling worker
threads. Some thought needs to be given about how to scale this to engage
multiple CPUs. Horizontal scaling may also shorten the poll() lists easing
C10K problem.
We should look into better solutions than poll() for platforms that have
them (epoll on Linux, kqueue on BSD, and event ports on illumos).
Note that the file descriptors start out in blocking mode for now, but
then are placed into non-blocking mode. This is because the negotiation
phase is not yet callback driven, and so needs to be synchronous.
|
| |
|
|
|
|
|
| |
Transport-level pipe initialization is now sepearate and explicit.
The POSIX send/recv logic still uses threads under the hood, but
makes use of the AIO framework for send/recv. This is a key stepping
stone towards enabling poll() or similar async I/O approaches.
|
| | |
|
| | |
|
| | |
|
| | |
|
|
|
We will still need some kind of specific handling of cancellation for
msg queues, but it will be simpler to just implement that for the queues,
and not worry about cancellation in the general case around poll etc.
(The low level poll and I/O routines will get notified by their underlying
transport pipes/descriptors closing.)
|