| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This provides context support for REQ and REP sockets.
More discussion around this is in the issue itself.
Optionally we would like to extend this to the surveyor pattern.
Note that we specifically do not support pollable descriptors
for non-default contexts, and the results of using file descriptors
for polling (NNG_OPT_SENDFD and NNG_OPT_RECVFD) is undefined.
In the future, it might be nice to figure out how to factor in
optional use of a message queue for users who want more buffering,
but we think there is little need for this with cooked mode.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #302 nng_dialer/listener/pipe_getopt_sockaddr desired
This adds plumbing to pass and check the type of options
all the way through.
NNG_ZT_OPT_ORBIT is type UINT64, but you can use the untyped form to
pass two of them if needed.
No typed access for retrieving strings yet. I think this should allocate
a pointer and copy that out, but that's for later.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces enough of the HTTP API to support fully server
applications, including creation of websocket style protocols,
pluggable handlers, and so forth.
We have also introduced scatter/gather I/O (rudimentary) for
aios, and made other enhancements to the AIO framework. The
internals of the AIOs themselves are now fully private, and we
have eliminated the aio->a_addr member, with plans to remove the
pipe and possibly message members as well.
A few other minor issues were found and fixed as well.
The HTTP API includes request, response, and connection objects,
which can be used with both servers and clients. It also defines
the HTTP server and handler objects, which support server applications.
Support for client applications will require a client object to be
exposed, and that should be happening shortly.
None of this is "documented" yet, bug again, we will follow up shortly.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a rather large changeset -- it fundamentally adds websocket
transport, but as part of this changeset we added a generic framework
for both HTTP and websocket. We also made some supporting changes to
the core, such as changing the way timeouts work for AIOs and adding
additional state keeping for AIOs, and adding a common framework for
deferred finalization (to avoid certain kinds of circular deadlocks
during resource cleanup). We also invented a new initialization framework
so that we can avoid wiring in knowledge about them into the master
initialization framework.
The HTTP framework is not yet complete, but it is good enough for simple
static serving and building additional services on top of -- including
websocket. We expect both websocket and HTTP support to evolve
considerably, and so these are not part of the public API yet.
Property support for the websocket transport (in particular address
properties) is still missing, as is support for TLS.
The websocket transport here is a bit more robust than the original
nanomsg implementation, as it supports multiple sockets listening at
the same port sharing the same HTTP server instance, discriminating
between them based on URI (and possibly the virtual host).
Websocket is enabled by default at present, and work to conditionalize
HTTP and websocket further (to minimize bloat) is still pending.
|
| |
|
|
|
|
|
|
|
|
| |
While here we added a test for the aio stuff, and cleaned up some dead
code for the old fd notifications. There were a few improvements to
shorten & clean code elsewhere, such as short-circuiting task wait
when the task has no callback.
The legacy sendmsg() and recvmsg() APIs are still in the socket core
until we convert the device code to use the aios.
|
| |
|
|
|
|
|
|
|
| |
This eliminates the "quasi-functional" notify API altogether.
The aio framework will be coming soon to replace it.
As a bonus, apps (legacy apps) that use the notification FDs
will see improved performance, since we don't have to context
switch to give them a notification.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This makes the APIs use string keys, and largely eliminates the use of
integer option IDs altogether. The underlying registration for options
is also now a bit richer, letting protcols and transports declare the
actual options they use, rather than calling down into each entry point
carte blanche and relying on ENOTSUP.
This code may not be as fast as the integers was, but it is more intuitive,
easier to extend, and is not on any hot code paths. (If you're diddling
options on a hot code path you're doing something wrong.)
|
| |
|
|
|
|
| |
This supports creating listeners and dialers, managing options
on them (though only a few options are supported at present),
starting them and closing them, all independently.
|
| |
|
|
|
| |
We enable a few flags, but now the details of the socket internals
are completely private to the socket.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
| |
fixes #66 Make pipe and endpoint structures private
This changes a number of things, refactoring endpoints and supporting
code to keep their internals private, and making endpoint close
synchronous. This will allow us to add a consumer facing API for
nng_ep_close(), as well as property APIs, etc.
While here a bunch of convoluted and dead code was cleaned up.
|
| |
|
|
| |
fixes #23 Restore the old idhash logic for sockets
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #38 Make protocols "pluggable", or at least optional
This is a breaking change, as we've done away with the central
registered list of protocols, and instead demand the user call
nng_xxx_open() where xxx is a protocol name. (We did keep a
table around in the compat framework though.)
There is a nice way for protocols to plug in via
an nni_proto_open(), where they can use a generic constructor
that they use to build a protocol specific constructor (passing
their ops vector in.)
|
| |
|
|
|
|
|
| |
Hop counts for REQ were busted (bad TTL), and imported the
compat_reqtll test. At the same time, added code to nn_term
to shut down completely, discarding sockets. (Note that some
things, such as globals, may still be left around; that's ok.)
|
| |
|
|
|
|
|
|
|
| |
We need to remember that protocol stops can run synchronously, and
therefore we need to wait for the aio to complete. Further, we need
to break apart shutting down aio activity from deallocation, as we need
to shut down *all* async activity before deallocating *anything*.
Noticed that we had a pipe race in the surveyor pattern too.
|
| | |
|
| | |
|
| |
|
|
|
|
|
| |
This cleans up the pipe creation logic greatly, and eliminates
a nasty potential deadlock (lock-order incorrect.) It also
adds a corret binary exponential and randomized backoff on both
accept and connect.
|
| |
|
|
|
|
| |
This actually is breaking at the moment, because we don't have
good integration with timeouts, and there are some frustrating
races with timeouts at points that can cause apparent hangs.
|
| |
|
|
|
|
| |
This logic leaves a race condition in the dial side, which will
be fixed with a subsequent change to convert that to fully asynchronous
as well.
|
| |
|
|
|
|
| |
We still have endpoint related races apparently; we need to examine
the possibility of handling endpoints much like we do pipes, which seem
to be race free.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
| |
This adds nn_device and nng_device. There were some internal changes
required to fix shutdown / close issues. Note that we shut down the
sockets when exiting from device -- this is required to make both threads
see the failure and bail, since we are not using a single event loop.
I also noticed that the bus protocol had a bug where it would send
messages back to the originator. This was specifically tested for in
the compat_device test, and we have fixed it.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The CMSG handling was completely borked. This is fixed now, and
we stash the SP header size (ugh) in the CMSG contents to match what
nanomsg does. We now pass the cmsg validation test.
We also fixed handling of certain endpoint-related options, so that
endpoints can get options from the socket at initialization time.
This required a minor change to the transport API for endpoints.
Finally, we fixed a critical fault in the REP handling of RAW sockets,
which caused them to always return NNG_ESTATE in all cases. It should
now honor the actual socket option.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This does a few things. First it closes some preexisting leaks.
Second it tightens the overall close logic so that we automatically
discard idhash resources (while keeping numeric values for next id
etc. around) when the last socket is closed. This then eliminates
the need for applications to ever explicitly terminate resources.
It turns out platform-specific resources established at nni_init()
time might still be leaked, but it's also the case that we now no
longer dynamically allocate anything at platform initialization time.
(This presumes that the platform doesn't do so under the hood when
creating critical sections or mutexes for example.)
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
| |
This gives a better idea of pipe ID uniqueness, and is a step towards
conversion of the API to use IDs instead of pointers.
|
| |
|
|
|
|
|
|
| |
This change provides for a private callback in the message queues,
which can be used to notify the socket, and which than arranges for
the appropriate event thread to run.
Upper layer hooks to access this still need to be written.
|
| |
|
|
|
|
|
|
|
|
| |
This compiles correctly, but doesn't actually deliver events yet.
As part of this, I've made most of the initializables in nng
safe to tear-down if uninitialized (or set to zero e.g. via calloc).
This makes it loads easier to write the teardown on error code, since
I can deinit everything, without worrying about which things have been
initialized and which have not.
|
| |
|
|
|
| |
This should eliminate all need for protocols to do their own
thread management tasks.
|
| |
|
|
|
|
|
|
|
| |
In an attempt to simplify the protocol implementation, and hopefully
track down a close related race, we've made it so that most protocols
need not worry about locks, and can access the socket lock if they do
need a lock. They also let the socket manage their workers, for the
most part. (The req protocol is special, since it needs a top level
work distributor, *and* a resender.)
|
| | |
|
| |
|
|
| |
Also we added a two phase shutdown for threads.
|