| Commit message (Collapse) | Author | Age |
| ... | |
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The connect & accept logic for IPC is now fully asynchronous.
This will serve as a straight-forward template for TCP. Note that
the upper logic still uses a thread to run this "synchronously", but
that will be able to be removed once the last transport (TCP) is made
fully async.
The unified ipcsock is also now separated, and we anticipate being
able to remove the posix_sock.c logic shortly. Separating out the
endpoint logic from the pipe logic helps makes things clearer, and
may faciliate a day where endpoints have multiple addresses (for
example with a connect() endpoint that uses a round-robin DNS list
and tries to run the entire list in parallel, stopping with the first
connection made.)
The platform header got a little cleanup while we were here.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
| |
Note that we're going to refactor this again, for both TCP and
IPC, to actually push the endpoint abstraction further down
instead of using a combined "socket" abstraction. This may help
solve other problems, such as parallel outgoing connections.
Nonetheless, most of the work to make POSIX sockets fully async
is now done.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This eliminates the two threads per pipe that were being used to provide
basic I/O handling, replacing them with a single global thread for now,
that uses poll and nonblocking I/O. This should lead to great scalability.
The infrastructure is in place to easily expand to multiple polling worker
threads. Some thought needs to be given about how to scale this to engage
multiple CPUs. Horizontal scaling may also shorten the poll() lists easing
C10K problem.
We should look into better solutions than poll() for platforms that have
them (epoll on Linux, kqueue on BSD, and event ports on illumos).
Note that the file descriptors start out in blocking mode for now, but
then are placed into non-blocking mode. This is because the negotiation
phase is not yet callback driven, and so needs to be synchronous.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
| |
As with TCP, we're still using threads under the hood. But this
completes the send/recv logic conversion for POSIX to our AIO framework,
and hence represents a substantial milestone towards full asyncronous
operation.
We still need to do accept/connect operations asynchronously, then making.
Windows overlapped IO work properly. After that, poll/epoll/kqueue, etc.
|
| | |
|
| |
|
|
|
|
|
| |
Transport-level pipe initialization is now sepearate and explicit.
The POSIX send/recv logic still uses threads under the hood, but
makes use of the AIO framework for send/recv. This is a key stepping
stone towards enabling poll() or similar async I/O approaches.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
| |
I seem to be having a very difficult time getting dual-stack sockets
to function properly on Windows. I've sort of abandoned it for now.
I need to think about how to solve this -- it's not clear to me
right now whether dual stack sockets are the right answer or not.
People do expect these to work, but a tcp6:// url might be more
elegant.
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Sleep() on Win32 rounds *down*, leading to truncated timeouts.
What we do is change our sleep routing to start incrementally
sleeping by 1ms until the tick count is reached. This ensures
we don't wake early.
This problem affects condition variables too, which means that some
timeouts may occur up to one clock tick early (15ish ms). This should
not be a problem for most users, who should really only be setting
timeouts in quantities of a second or greater.
|
| |
|
|
|
|
|
|
|
|
| |
This compiles correctly, but doesn't actually deliver events yet.
As part of this, I've made most of the initializables in nng
safe to tear-down if uninitialized (or set to zero e.g. via calloc).
This makes it loads easier to write the teardown on error code, since
I can deinit everything, without worrying about which things have been
initialized and which have not.
|