| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This eliminates all the old #define's or enum values, making all
option IDs now totally dynamic, and providing well-known string
values for well-behaved applications.
We have added tests of some of these options, including lookups, and
so forth. We have also fixed a few problems; including at least
one crasher bug when the timeouts on reconnect were zero.
Protocol specific options are now handled in the protocol. We will
be moving the initialization for a few of those well known entities
to the protocol startup code, following the PAIRv1 pattern, later.
Applications must therefore not depend on the value of the integer IDs,
at least until the application has opened a socket of the appropriate
type.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the underlying platform fails (FreeBSD is the only one I'm aware
of that does this!), we use a global lock or condition variable instead.
This means that our lock initializers never ever fail.
Probably we could eliminate most of this for Linux and Darwin, since
on those platforms, mutex and condvar initialization reasonably never
fails. Initial benchmarks show little difference either way -- so we
can revisit (optimize) later.
This removes a lot of otherwise untested code in error cases and so forth,
improving coverage and resilience in the face of allocation failures.
Platforms other than POSIX should follow a similar pattern if they need
this. (VxWorks, I'm thinking of you.) Most sane platforms won't have
an issue here, since normally these initializations do not need to allocate
memory. (Reportedly, even FreeBSD has plans to "fix" this in libthr2.)
While here, some bugs were fixed in initialization & teardown.
The fallback code is properly tested with dedicated test cases.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
fixes #38 Make protocols "pluggable", or at least optional
This is a breaking change, as we've done away with the central
registered list of protocols, and instead demand the user call
nng_xxx_open() where xxx is a protocol name. (We did keep a
table around in the compat framework though.)
There is a nice way for protocols to plug in via
an nni_proto_open(), where they can use a generic constructor
that they use to build a protocol specific constructor (passing
their ops vector in.)
|
| |
|
|
|
|
|
|
|
| |
We need to remember that protocol stops can run synchronously, and
therefore we need to wait for the aio to complete. Further, we need
to break apart shutting down aio activity from deallocation, as we need
to shut down *all* async activity before deallocating *anything*.
Noticed that we had a pipe race in the surveyor pattern too.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
| |
This compiles correctly, but doesn't actually deliver events yet.
As part of this, I've made most of the initializables in nng
safe to tear-down if uninitialized (or set to zero e.g. via calloc).
This makes it loads easier to write the teardown on error code, since
I can deinit everything, without worrying about which things have been
initialized and which have not.
|
| | |
|
| |
|
|
|
| |
This should eliminate all need for protocols to do their own
thread management tasks.
|
| |
|
|
|
|
|
|
|
| |
In an attempt to simplify the protocol implementation, and hopefully
track down a close related race, we've made it so that most protocols
need not worry about locks, and can access the socket lock if they do
need a lock. They also let the socket manage their workers, for the
most part. (The req protocol is special, since it needs a top level
work distributor, *and* a resender.)
|
|
|
PUSH attempts to do a round-robin based distribution. However, I
noticed that there is a bug in REQ, because REQ sockets will continue
to pull down work until the first one no longer has room. This can
in theory lead to scheduliung imbalances when the load is very light.
(Under heavy load, the backpressure dominates.)
Also, I note that mangos suffers the same problem. It does not
make any attempt to deliver work equally, basically each pipe winds
up pulling messages until its own buffers are full. This is bad.
We can borrow the logic here for both REQ and mangos.
None of this is tested yet.
|