| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces a new transport (compatible with the TLS
transport from mangos), using TLS v1.2.
To use the new transport, you must have the mbed TLS library
available on your system (Xenial libmbedtls-dev). You can use
version 2.x or newer -- 1.3.x and PolarSSL versions are not
supported.
You enable the TLS transport with -DNNG_TRANSPORT_TLS=ON in the CMake
configuration.
You must configure the server certificate by default, and this can only
be done using nng options. See the nng_tls man page for details.
This work is experimental, and was made possible by Capitar IT Group BV,
and Staysail Systems, Inc.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes all the protocols and transports optional. All
of them except ZeroTier are enabled by default, but you can
now disable them (remove from the build) with cmake options.
The test suite is modified so that tests still run as much
as they can, but skip over things caused by missing functionality
from the library (due to configuration).
Further, the constant definitions and prototypes for functions
that are specific to transports or protocols are moved into
appropriate headers, which should be included directly by
applications wishing to use these.
We have also added and improved documentation -- all of the
transports are documented, and several more man pages for
protocols have been added. (Req/Rep and Surveyor are still
missing.)
|
| |
|
|
|
|
|
| |
We added nng_inproc man page, and a header with an explicit
registration method for it. We also fixed up the markup on
several other pages, and corrected the include statements for
nng_zerotier.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This makes the APIs use string keys, and largely eliminates the use of
integer option IDs altogether. The underlying registration for options
is also now a bit richer, letting protcols and transports declare the
actual options they use, rather than calling down into each entry point
carte blanche and relying on ENOTSUP.
This code may not be as fast as the integers was, but it is more intuitive,
easier to extend, and is not on any hot code paths. (If you're diddling
options on a hot code path you're doing something wrong.)
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This eliminates all the old #define's or enum values, making all
option IDs now totally dynamic, and providing well-known string
values for well-behaved applications.
We have added tests of some of these options, including lookups, and
so forth. We have also fixed a few problems; including at least
one crasher bug when the timeouts on reconnect were zero.
Protocol specific options are now handled in the protocol. We will
be moving the initialization for a few of those well known entities
to the protocol startup code, following the PAIRv1 pattern, later.
Applications must therefore not depend on the value of the integer IDs,
at least until the application has opened a socket of the appropriate
type.
|
| |
|
|
|
|
|
| |
This eliminates tests for code that we cannot reach, because the
upper layer endpoint code already ensures that we don't get called
if we are closing, that the mode is correct, and that only one
outstanding endpoint operation is in progress on any given endpoint.
|
| |
|
|
|
|
| |
This also includes tests for some of the edge cases surrounding
pluggable transports, such as version mismatch, duplication registration,
and failure to initialize.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the underlying platform fails (FreeBSD is the only one I'm aware
of that does this!), we use a global lock or condition variable instead.
This means that our lock initializers never ever fail.
Probably we could eliminate most of this for Linux and Darwin, since
on those platforms, mutex and condvar initialization reasonably never
fails. Initial benchmarks show little difference either way -- so we
can revisit (optimize) later.
This removes a lot of otherwise untested code in error cases and so forth,
improving coverage and resilience in the face of allocation failures.
Platforms other than POSIX should follow a similar pattern if they need
this. (VxWorks, I'm thinking of you.) Most sane platforms won't have
an issue here, since normally these initializations do not need to allocate
memory. (Reportedly, even FreeBSD has plans to "fix" this in libthr2.)
While here, some bugs were fixed in initialization & teardown.
The fallback code is properly tested with dedicated test cases.
|
| |
|
|
|
| |
Also enables creating endpoints that are idle (first part of
endpoint options API) and shutting down endpoints.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This makes the operations that work on headers start with
nni_msg_header or nng_msg_header. It also renames _trunc to
_chop (same strlen as _trim), and renames prepend to insert.
We add a shorthand for clearing message content, and make
better use of the endian safe 32-bit accessors too.
This also fixes a bug in inserting large headers into messages.
A test suite for message handling is included.
|
| |
|
|
|
|
|
|
|
| |
This passes valgrind 100% clean for both helgrind and deep leak
checks. This represents a complete rethink of how the AIOs work,
and much simpler synchronization; the provider API is a bit simpler
to boot, as a number of failure modes have been simply eliminated.
While here a few other minor bugs were squashed.
|
| |
|
|
|
|
|
|
|
|
|
| |
We have seen leaks of pipes causing test failures (e.g. the Windows
IPC test) due to EADDRINUSE. This was caused by a case where we
failed to pass the pipe up because the AIO had already been canceled,
and we didn't realize that we had oprhaned the pipe. The fix is to
add a return value to nni_aio_finish, and verify that we did finish
properly, or if we did not then we must free the pipe ourself. (The
zero return from nni_aio_finish indicates that it accepts ownership
of resources passed via the aio.)
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
| |
Most of the races around close were probably here - the cancellation was
not getting through on endpoint close, which meant that we could actually
toss endpoints while they were in use.
We need to fix the timeouts stuff -- especially for reconnects etc, but
we are just about ready for this stuff to be reintegrated into master.
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out that I had to fix a number of subtle asynchronous
handling bugs, but now TCP is fully asynchronous. We need to
change the high-level dial and listen interfaces to be async
as well.
Some of the transport APIs have changed here, and I've elected
to change what we expose to consumers as endpoints into seperate
dialers and listeners. Under the hood they are the same, but
it turns out that its helpful to know the intended use of the
endpoint at initialization time.
Scalability still occasionally hangs on Linux. Investigation
pending.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
| |
Transport-level pipe initialization is now sepearate and explicit.
The POSIX send/recv logic still uses threads under the hood, but
makes use of the AIO framework for send/recv. This is a key stepping
stone towards enabling poll() or similar async I/O approaches.
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The CMSG handling was completely borked. This is fixed now, and
we stash the SP header size (ugh) in the CMSG contents to match what
nanomsg does. We now pass the cmsg validation test.
We also fixed handling of certain endpoint-related options, so that
endpoints can get options from the socket at initialization time.
This required a minor change to the transport API for endpoints.
Finally, we fixed a critical fault in the REP handling of RAW sockets,
which caused them to always return NNG_ESTATE in all cases. It should
now honor the actual socket option.
|
| | |
|
| | |
|
| |
|
|
|
|
|
| |
The use of a single function to get both size and length actually
turned out to be awkward to use; better to have separate functions
to get each. While here, disable some of the initialization/fork
checks, because it turns out they aren't needed.
|
| |
|
|
|
|
|
| |
This uncovered a few problems - inproc was not moving the headers
to the body on transmit, and the message chunk allocator had a serious
bug leading to memory corruption. I've also added a message dumper,
which turns out to be incredibly useful during debugging.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
| |
At this point listening and dialing operations appear to function properly.
As part of this I had to break the close logic up since otherwise we had a
loop trying to reap a thread from itself. So there is now a separate reaper
thread for pipes per-socket. I also changed lists to be a bit more rigid,
and allocations now zero memory initially. (We had bugs due to uninitialized
memory, and rather than hunt them all down, lets just init them to sane zero
values.)
|
| |
|
|
|
|
|
| |
This was done as these entry points are more clearly associated with
single function transport routines like those from BSD sockets, unlike
our higher level dial() and listen() APIs that do accept() or reconnect
in loops.
|
| | |
|
| | |
|