| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
| |
There is now a public nng_duration type. We have also updated the
zerotier work to work with the signed int64_t's that the latst ZeroTier
dev branch is using.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the underlying platform fails (FreeBSD is the only one I'm aware
of that does this!), we use a global lock or condition variable instead.
This means that our lock initializers never ever fail.
Probably we could eliminate most of this for Linux and Darwin, since
on those platforms, mutex and condvar initialization reasonably never
fails. Initial benchmarks show little difference either way -- so we
can revisit (optimize) later.
This removes a lot of otherwise untested code in error cases and so forth,
improving coverage and resilience in the face of allocation failures.
Platforms other than POSIX should follow a similar pattern if they need
this. (VxWorks, I'm thinking of you.) Most sane platforms won't have
an issue here, since normally these initializations do not need to allocate
memory. (Reportedly, even FreeBSD has plans to "fix" this in libthr2.)
While here, some bugs were fixed in initialization & teardown.
The fallback code is properly tested with dedicated test cases.
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Since we use the tick counter to sleep, we should use the same clock
for validation. The problem is that the high performance tick counter
on the CPU may be slightly out of agreement with the windows clock.
Furthermore, the tick counter is probably lots faster to retrieve since
it is already updated, and needn't be recalculated each time.
(We should consider just switching to millisecond clock resolution
internally as well. It turns out that I don't think that timers that
are shorter than 1ms are very useful.)
|
| |
|
|
|
|
| |
Windows is getting there. Needs a couple of more more hours to enable
everything, especially IPC, and most of the work at this point is probably
some combination of debug and tweaking things like error handling.
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| | |
|
| |
|