// // Copyright 2017 Garrett D'Amore // // This software is supplied under the terms of the MIT License, a // copy of which should be located in the distribution where this // file was obtained (LICENSE.txt). A copy of the license may also be // found online at https://opensource.org/licenses/MIT. // #ifndef CORE_PLATFORM_H #define CORE_PLATFORM_H // We require some standard C header files. The only one of these that might // be problematic is , which is required for C99. Older versions // of the Windows compilers might not have this. However, latest versions of // MS Studio have a functional . If this impacts you, just upgrade // your tool chain. #include #include #include // These are the APIs that a platform must implement to support nng. // A word about fork-safety: This library is *NOT* fork safe, in that // functions may not be called in the child process without an intervening // exec(). The library attempts to detect this situation, and crashes the // process with an error message if it encounters it. (See nn_platform_init // below.) // // Additionally, some file descriptors may leak across fork even to // child processes. We make every reasonable effort to ensure that this // does not occur, but on some platforms there are unavoidable race // conditions between file creation and marking the file close-on-exec. // // Forkers should use posix_spawn() if possible, and as much as possible // arrange for file close on exec by posix_spawn, or close the descriptors // they do not need in the child. (Note that posix_spawn() does *NOT* // arrange for pthread_atfork() handlers to be called on some platforms.) // nni_plat_abort crashes the system; it should do whatever is appropriate // for abnormal programs on the platform, such as calling abort(). extern void nni_plat_abort(void); // nni_plat_println is used to emit debug messages. Typically this is used // during core debugging, or to emit panic messages. Message content will // not contain newlines, but the output will add them. extern void nni_plat_println(const char *); // nni_alloc allocates memory. In most cases this can just be malloc(). // However, you may provide a different allocator, for example it is // possible to use a slab allocator or somesuch. It is permissible for this // to return NULL if memory cannot be allocated. extern void *nni_alloc(size_t); // nni_free frees memory allocated with nni_alloc. It takes a size because // some allocators do not track size, or can operate more efficiently if // the size is provided with the free call. Examples of this are slab // allocators like this found in Solaris/illumos (see libumem or kmem). // This routine does nothing if supplied with a NULL pointer and zero size. // Most implementations can just call free() here. extern void nni_free(void *, size_t); typedef struct nni_plat_mtx nni_plat_mtx; typedef struct nni_plat_cv nni_plat_cv; typedef struct nni_plat_thr nni_plat_thr; typedef struct nni_plat_tcpsock nni_plat_tcpsock; typedef struct nni_plat_ipcsock nni_plat_ipcsock; // Mutex handling. // nni_plat_mtx_init initializes a mutex structure. This may require dynamic // allocation, depending on the platform. It can return NNG_ENOMEM if that // fails. An initialized mutex must be distinguishable from zeroed memory. extern int nni_plat_mtx_init(nni_plat_mtx *); // nni_plat_mtx_fini destroys the mutex and releases any resources allocated // for it's use. If the mutex is zeroed memory, this should do nothing. extern void nni_plat_mtx_fini(nni_plat_mtx *); // nni_plat_mtx_lock locks the mutex. This is not recursive -- a mutex can // only be entered once. extern void nni_plat_mtx_lock(nni_plat_mtx *); // nni_plat_mtx_unlock unlocks the mutex. This can only be performed by the // threadthat owned the mutex. extern void nni_plat_mtx_unlock(nni_plat_mtx *); // nni_plat_mtx_tryenter tries to lock the mutex. If it can't, it may return // NNG_EBUSY if the mutex is already owned. extern int nni_plat_mtx_trylock(nni_plat_mtx *); // nni_plat_cv_init initializes a condition variable. We require a mutex be // supplied with it, and that mutex must always be held when performing any // operations on the condition variable (other than fini.) This may require // dynamic allocation, and if so this operation may fail with NNG_ENOMEM. // As with mutexes, an initialized mutex should be distinguishable from // zeroed memory. extern int nni_plat_cv_init(nni_plat_cv *, nni_plat_mtx *); // nni_plat_cv_fini releases all resources associated with condition variable. // If the cv points to just zeroed memory (was never initialized), it does // nothing. extern void nni_plat_cv_fini(nni_plat_cv *); // nni_plat_cv_wake wakes all waiters on the condition. This should be // called with the lock held. extern void nni_plat_cv_wake(nni_plat_cv *); // nni_plat_cv_wait waits for a wake up on the condition variable. The // associated lock is atomically released and reacquired upon wake up. // Callers can be spuriously woken. The associated lock must be held. extern void nni_plat_cv_wait(nni_plat_cv *); // nni_plat_cv_until waits for a wakeup on the condition variable, or // until the system time reaches the specified absolute time. (It is an // absolute form of nni_cond_timedwait.) Early wakeups are possible, so // check the condition. It will return either NNG_ETIMEDOUT, or 0. extern int nni_plat_cv_until(nni_plat_cv *, nni_time); // nni_plat_thr_init creates a thread that runs the given function. The // thread receives a single argument. The thread starts execution // immediately. extern int nni_plat_thr_init(nni_plat_thr *, void (*)(void *), void *); // nni_thread_reap waits for the thread to exit, and then releases any // resources associated with the thread. After this returns, it // is an error to reference the thread in any further way. extern void nni_plat_thr_fini(nni_plat_thr *); // nn_plat_clock returns a number of microseconds since some arbitrary time // in the past. The values returned by nni_clock must use the same base // as the times used in nni_plat_cond_waituntil. The nni_plat_clock() must // returnvalues > 0, and must return values smaller than 2^63. (We could relax // this last constraint, but there is no reason to, and leaves us the option // of using negative values for other purposes in the future.) extern nni_time nni_plat_clock(void); // nni_plat_usleep sleeps for the specified number of microseconds (at least). extern void nni_plat_usleep(nni_duration); // nni_plat_init is called to allow the platform the chance to // do any necessary initialization. This routine MUST be idempotent, // and threadsafe, and will be called before any other API calls, and // may be called at any point thereafter. It is permitted to return // an error if some critical failure inializing the platform occurs, // but once this succeeds, all future calls must succeed as well, unless // nni_plat_fini has been called. // // The function argument should be called if the platform has not initialized // (i.e. exactly once), and its result passed back to the caller. If it // does not return 0 (success), then it may be called again to try to // initialize the platform again at a later date. extern int nni_plat_init(int (*)(void)); // nni_plat_fini is called to clean up resources. It is intended to // be called as the last thing executed in the library, and no other functions // will be called until nni_platform_init is called. extern void nni_plat_fini(void); // nni_plat_strerror allows the platform to use additional error messages // for additional error codes. The err code passed in should be the // equivalent of errno or GetLastError, without the NNG_ESYSERR component. // The platform should make sure that the returned value will be valid // after the call returns. (If necessary, thread-local storage can be // used.) extern const char *nni_plat_strerror(int); // nni_plat_lookup_host looks up a hostname in DNS, or the local hosts // file, or whatever. If your platform lacks support for naming, it must // at least cope with converting IP addresses in string form. The final // flags may include NNI_FLAG_IPV4ONLY to prevent IPv6 names from being // returned on dual stack machines. extern int nni_plat_lookup_host(const char *, nni_sockaddr *, int); // nni_plat_tcp_init initializes the socket, for example it can // set underlying file descriptors to -1, etc. extern int nni_plat_tcp_init(nni_plat_tcpsock *); // nni_plat_tcp_fini just closes a TCP socket, and releases any related // resources. extern void nni_plat_tcp_fini(nni_plat_tcpsock *); // nni_plat_tcp_shutdown performs a shutdown of the socket. For // BSD sockets, this closes both sides of the TCP connection gracefully, // but the underlying file descriptor is left open. (This part is critical // to prevention of close() related races.) extern void nni_plat_tcp_shutdown(nni_plat_tcpsock *); // nni_plat_tcp_listen creates a TCP socket in listening mode, bound // to the specified address. Note that nni_plat_tcpsock should be defined // to whatever your platform uses. For most systems its just "int". extern int nni_plat_tcp_listen(nni_plat_tcpsock *, const nni_sockaddr *); // nni_plat_tcp_accept does the accept to accept an inbound connection. // The tcpsock used for the server will have been set up with the // nni_plat_tcp_listen. extern int nni_plat_tcp_accept(nni_plat_tcpsock *, nni_plat_tcpsock *); // nni_plat_tcp_connect is the client side. Two addresses are supplied, // as the client may specify a local address to which to bind. This // second address may be NULL to use ephemeral ports, which is the // usual default. extern int nni_plat_tcp_connect(nni_plat_tcpsock *, const nni_sockaddr *, const nni_sockaddr *); // nni_plat_tcp_send sends data to the remote side. The platform is // responsible for attempting to send all of the data. The iov count // will never be larger than 4. THe platform may modify the iovs. extern int nni_plat_tcp_send(nni_plat_tcpsock *, nni_iov *, int); // nni_plat_tcp_recv recvs data into the buffers provided by the // iovs. The implementation does not return until the iovs are completely // full, or an error condition occurs. extern int nni_plat_tcp_recv(nni_plat_tcpsock *, nni_iov *, int); // nni_plat_ipc_init initializes the socket, for example it can // set underlying file descriptors to -1, etc. extern int nni_plat_ipc_init(nni_plat_ipcsock *); // nni_plat_ipc_fini just closes an IPC socket, and releases any related // resources. extern void nni_plat_ipc_fini(nni_plat_ipcsock *); // nni_plat_ipc_shutdown performs a shutdown of the socket. For // BSD sockets, this closes both sides of the IPC connection gracefully, // but the underlying file descriptor is left open. (This part is critical // to prevention of close() related races.) extern void nni_plat_ipc_shutdown(nni_plat_ipcsock *); // nni_plat_tcp_listen creates an IPC socket in listening mode, bound // to the specified path. Note that nni_plat_ipcsock should be defined // to whatever your platform uses. For most systems its just "int". extern int nni_plat_ipc_listen(nni_plat_ipcsock *, const char *); // nni_plat_ipc_accept does the accept to accept an inbound connection. // The ipcsock used for the server will have been set up with the // nni_plat_ipc_listen. extern int nni_plat_ipc_accept(nni_plat_ipcsock *, nni_plat_ipcsock *); // nni_plat_ipc_connect is the client side. extern int nni_plat_ipc_connect(nni_plat_ipcsock *, const char *); // nni_plat_ipc_send sends data to the peer. The platform is responsible // for attempting to send all of the data. The iov count will never be // larger than 4. The platform may modify the iovs. extern int nni_plat_ipc_send(nni_plat_ipcsock *, nni_iov *, int); // nni_plat_ipc_recv recvs data into the buffers provided by the // iovs. The implementation does not return until the iovs are completely // full, or an error condition occurs. extern int nni_plat_ipc_recv(nni_plat_ipcsock *, nni_iov *, int); // nni_plat_seed_prng seeds the PRNG subsystem. The specified number // of bytes of entropy should be stashed. When possible, cryptographic // quality entropy sources should be used. Note that today we prefer // to seed up to 256 bytes of data. extern void nni_plat_seed_prng(void *, size_t); // nni_plat_pipe creates a pair of linked file descriptors that are // suitable for notification via SENDFD/RECVFD. These are platform // specific and exposed to applications for integration into event loops. // The first pipe is written to by nng to notify, and the second pipe is // generally read from to clear the event. The implementation is not // obliged to provide two pipes -- for example eventfd can be used with // just a single file descriptor. In such a case the implementation may // just provide the same value twice. extern int nni_plat_pipe_open(int *, int *); // nni_plat_pipe_raise pushes a notification to the pipe. Usually this // will just be a non-blocking attempt to write a single byte. It may // however use any other underlying system call that is appropriate. extern void nni_plat_pipe_raise(int); // nni_plat_pipe_clear clears all notifications from the pipe. Usually this // will just be a non-blocking read. (The call should attempt to read // all data on a pipe, for example.) extern void nni_plat_pipe_clear(int); // nni_plat_pipe_close closes both pipes that were provided by the open // routine. extern void nni_plat_pipe_close(int, int); // Actual platforms we support. This is included up front so that we can // get the specific types that are supplied by the platform. #if defined(PLATFORM_POSIX) #include "platform/posix/posix_impl.h" #elif defined(PLATFORM_WINDOWS) #include "platform/windows/win_impl.h" #else #error "unknown platform" #endif #endif // CORE_PLATFORM_H