// // Copyright 2025 Staysail Systems, Inc. // Copyright 2018 Capitar IT Group BV // // This software is supplied under the terms of the MIT License, a // copy of which should be located in the distribution where this // file was obtained (LICENSE.txt). A copy of the license may also be // found online at https://opensource.org/licenses/MIT. // #include #include "core/nng_impl.h" // Request protocol. The REQ protocol is the "request" side of a // request-reply pair. This is useful for building RPC clients, for example. #define REQ0_SELF 0x30 #define REQ0_PEER 0x31 #define REQ0_SELF_NAME "req" #define REQ0_PEER_NAME "rep" typedef struct req0_pipe req0_pipe; typedef struct req0_sock req0_sock; typedef struct req0_ctx req0_ctx; static void req0_run_send_queue(req0_sock *, nni_aio_completions *); static void req0_ctx_reset(req0_ctx *); static void req0_pipe_fini(void *); static void req0_ctx_fini(void *); static void req0_ctx_init(void *, void *); static void req0_retry_cb(void *); // A req0_ctx is a "context" for the request. It uses most of the // socket, but keeps track of its own outstanding replays, the request ID, // and so forth. struct req0_ctx { req0_sock *sock; nni_list_node sock_node; // node on the socket context list nni_list_node send_node; // node on the send_queue nni_list_node pipe_node; // node on the pipe list nni_list_node retry_node; // node on the socket retry list uint32_t request_id; // request ID, without high bit set nni_aio *recv_aio; // user aio waiting to recv - only one! nni_aio *send_aio; // user aio waiting to send nng_msg *req_msg; // request message (owned by protocol) size_t req_len; // length of request message (for stats) nng_msg *rep_msg; // reply message nni_duration retry; nni_time retry_time; // retry after this expires bool conn_reset; // sent message w/o retry, peer disconnect }; // A req0_sock is our per-socket protocol private structure. struct req0_sock { nni_duration retry; bool closed; bool retry_active; // true if retry aio running nni_atomic_int ttl; req0_ctx master; // base socket master nni_list ready_pipes; nni_list busy_pipes; nni_list stop_pipes; nni_list contexts; nni_list send_queue; // contexts waiting to send. nni_list retry_queue; nni_aio retry_aio; // retry timer nni_id_map requests; // contexts by request ID nni_pollable readable; nni_pollable writable; nni_duration retry_tick; // clock interval for retry timer nni_mtx mtx; }; // A req0_pipe is our per-pipe protocol private structure. struct req0_pipe { nni_pipe *pipe; req0_sock *req; nni_list_node node; nni_list contexts; // contexts with pending traffic bool closed; nni_aio aio_send; nni_aio aio_recv; }; static void req0_sock_fini(void *); static void req0_send_cb(void *); static void req0_recv_cb(void *); static void req0_sock_init(void *arg, nni_sock *sock) { req0_sock *s = arg; NNI_ARG_UNUSED(sock); // Request IDs are 32 bits, with the high order bit set. // We start at a random point, to minimize likelihood of // accidental collision across restarts. nni_id_map_init(&s->requests, 0x80000000u, 0xffffffffu, true); nni_mtx_init(&s->mtx); NNI_LIST_INIT(&s->ready_pipes, req0_pipe, node); NNI_LIST_INIT(&s->busy_pipes, req0_pipe, node); NNI_LIST_INIT(&s->stop_pipes, req0_pipe, node); NNI_LIST_INIT(&s->send_queue, req0_ctx, send_node); NNI_LIST_INIT(&s->retry_queue, req0_ctx, retry_node); NNI_LIST_INIT(&s->contexts, req0_ctx, sock_node); // this is "semi random" start for request IDs. s->retry = NNI_SECOND * 60; s->retry_tick = NNI_SECOND; // how often we check for retries req0_ctx_init(&s->master, s); nni_pollable_init(&s->writable); nni_pollable_init(&s->readable); nni_aio_init(&s->retry_aio, req0_retry_cb, s); nni_atomic_init(&s->ttl); nni_atomic_set(&s->ttl, 8); } static void req0_sock_open(void *arg) { NNI_ARG_UNUSED(arg); } static void req0_sock_close(void *arg) { req0_sock *s = arg; nni_mtx_lock(&s->mtx); s->closed = true; nni_mtx_unlock(&s->mtx); } static void req0_sock_fini(void *arg) { req0_sock *s = arg; nni_aio_stop(&s->retry_aio); nni_mtx_lock(&s->mtx); NNI_ASSERT(nni_list_empty(&s->busy_pipes)); NNI_ASSERT(nni_list_empty(&s->stop_pipes)); NNI_ASSERT(nni_list_empty(&s->ready_pipes)); nni_mtx_unlock(&s->mtx); req0_ctx_fini(&s->master); nni_pollable_fini(&s->readable); nni_pollable_fini(&s->writable); nni_id_map_fini(&s->requests); nni_aio_fini(&s->retry_aio); nni_mtx_fini(&s->mtx); } static void req0_pipe_stop(void *arg) { req0_pipe *p = arg; req0_sock *s = p->req; nni_aio_stop(&p->aio_recv); nni_aio_stop(&p->aio_send); nni_mtx_lock(&s->mtx); nni_list_node_remove(&p->node); nni_mtx_unlock(&s->mtx); } static void req0_pipe_fini(void *arg) { req0_pipe *p = arg; nni_aio_fini(&p->aio_recv); nni_aio_fini(&p->aio_send); } static int req0_pipe_init(void *arg, nni_pipe *pipe, void *s) { req0_pipe *p = arg; nni_aio_init(&p->aio_recv, req0_recv_cb, p); nni_aio_init(&p->aio_send, req0_send_cb, p); NNI_LIST_NODE_INIT(&p->node); NNI_LIST_INIT(&p->contexts, req0_ctx, pipe_node); p->pipe = pipe; p->req = s; return (0); } static int req0_pipe_start(void *arg) { req0_pipe *p = arg; req0_sock *s = p->req; if (nni_pipe_peer(p->pipe) != REQ0_PEER) { nng_log_warn("NNG-PEER-MISMATCH", "Peer protocol mismatch: %d != %d, rejected.", nni_pipe_peer(p->pipe), REQ0_PEER); return (NNG_EPROTO); } nni_mtx_lock(&s->mtx); nni_list_append(&s->ready_pipes, p); nni_pollable_raise(&s->writable); req0_run_send_queue(s, NULL); nni_mtx_unlock(&s->mtx); nni_pipe_recv(p->pipe, &p->aio_recv); return (0); } static void req0_pipe_close(void *arg) { req0_pipe *p = arg; req0_sock *s = p->req; req0_ctx *ctx; nni_aio_close(&p->aio_recv); nni_aio_close(&p->aio_send); nni_mtx_lock(&s->mtx); // This removes the node from either busy_pipes or ready_pipes. // It doesn't much matter which. We stick the pipe on the stop // list, so that we can wait for that to close down safely. p->closed = true; nni_list_node_remove(&p->node); nni_list_append(&s->stop_pipes, p); if (nni_list_empty(&s->ready_pipes)) { nni_pollable_clear(&s->writable); } while ((ctx = nni_list_first(&p->contexts)) != NULL) { nni_list_remove(&p->contexts, ctx); nng_aio *aio; if (ctx->retry <= 0) { // If we can't retry, then just cancel the operation // altogether. We should only be waiting for recv, // because we will already have sent if we are here. if ((aio = ctx->recv_aio) != NULL) { ctx->recv_aio = NULL; nni_aio_finish_error(aio, NNG_ECONNRESET); req0_ctx_reset(ctx); } else { req0_ctx_reset(ctx); ctx->conn_reset = true; } } else if (ctx->req_msg != NULL) { // Reset the retry time to make it expire immediately. // Also move this immediately to the resend queue. // The timer should still be firing, so we don't need // to restart or reschedule that. ctx->retry_time = nni_clock() + ctx->retry; if (!nni_list_node_active(&ctx->send_node)) { nni_list_append(&s->send_queue, ctx); req0_run_send_queue(s, NULL); } } } nni_mtx_unlock(&s->mtx); } // For cooked mode, we use a context, and send out that way. This // completely bypasses the upper write queue. Each context keeps one // message pending; these are "scheduled" via the send_queue. The send_queue // is ordered, so FIFO ordering between contexts is provided for. static void req0_send_cb(void *arg) { req0_pipe *p = arg; req0_sock *s = p->req; nni_aio_completions sent_list; nni_aio_completions_init(&sent_list); if (nni_aio_result(&p->aio_send) != 0) { // We failed to send... clean up and deal with it. nni_msg_free(nni_aio_get_msg(&p->aio_send)); nni_aio_set_msg(&p->aio_send, NULL); nni_pipe_close(p->pipe); return; } // We completed a cooked send, so we need to reinsert ourselves // in the ready list, and re-run the send_queue. nni_mtx_lock(&s->mtx); if (p->closed || s->closed) { // This occurs if the req0_pipe_close has been called. // In that case we don't want any more processing. nni_mtx_unlock(&s->mtx); return; } nni_list_remove(&s->busy_pipes, p); nni_list_append(&s->ready_pipes, p); if (nni_list_empty(&s->send_queue)) { nni_pollable_raise(&s->writable); } req0_run_send_queue(s, &sent_list); nni_mtx_unlock(&s->mtx); nni_aio_completions_run(&sent_list); } static void req0_recv_cb(void *arg) { req0_pipe *p = arg; req0_sock *s = p->req; req0_ctx *ctx; nni_msg *msg; nni_aio *aio; uint32_t id; if (nni_aio_result(&p->aio_recv) != 0) { nni_pipe_close(p->pipe); return; } msg = nni_aio_get_msg(&p->aio_recv); nni_aio_set_msg(&p->aio_recv, NULL); nni_msg_set_pipe(msg, nni_pipe_id(p->pipe)); // We yank 4 bytes from front of body, and move them to the header. if (nni_msg_len(msg) < 4) { // Malformed message. goto malformed; } id = nni_msg_trim_u32(msg); // Schedule another receive while we are processing this. nni_mtx_lock(&s->mtx); // NB: If close was called, then this will just abort. nni_pipe_recv(p->pipe, &p->aio_recv); // Look for a context to receive it. if (((ctx = nni_id_get(&s->requests, id)) == NULL) || (ctx->send_aio != NULL) || (ctx->rep_msg != NULL)) { nni_mtx_unlock(&s->mtx); // No waiting context, we have not sent the request out to // the wire yet, or context already has a reply ready. // Discard the message. nni_msg_free(msg); return; } // We have our match, so we can remove this. nni_list_node_remove(&ctx->send_node); nni_id_remove(&s->requests, id); ctx->request_id = 0; if (ctx->req_msg != NULL) { // Only free msg if we originally cloned it (for retries) if (ctx->retry > 0) { nni_msg_free(ctx->req_msg); } ctx->req_msg = NULL; } // Is there an aio waiting for us? if ((aio = ctx->recv_aio) != NULL) { ctx->recv_aio = NULL; nni_mtx_unlock(&s->mtx); nni_aio_set_msg(aio, msg); nni_aio_finish_sync(aio, 0, nni_msg_len(msg)); } else { // No AIO, so stash msg. Receive will pick it up later. ctx->rep_msg = msg; if (ctx == &s->master) { nni_pollable_raise(&s->readable); } nni_mtx_unlock(&s->mtx); } return; malformed: nni_msg_free(msg); nni_pipe_close(p->pipe); } static void req0_retry_cb(void *arg) { req0_sock *s = arg; req0_ctx *ctx; nni_time now; bool reschedule = false; // The design of this is that retries are infrequent, because // we should normally be succeeding. We also hope that we are not // executing this linear scan of all requests too often, once // per clock tick is all we want. now = nni_clock(); nni_mtx_lock(&s->mtx); if (s->closed || (nni_aio_result(&s->retry_aio) != 0)) { nni_mtx_unlock(&s->mtx); return; } NNI_LIST_FOREACH (&s->retry_queue, ctx) { if (ctx->retry_time > now || (ctx->req_msg == NULL)) { continue; } if (!nni_list_node_active(&ctx->send_node)) { nni_list_append(&s->send_queue, ctx); } reschedule = true; } if (!nni_list_empty(&s->retry_queue)) { // if there are still jobs in the queue waiting to be // retried, do them. nni_sleep_aio(s->retry_tick, &s->retry_aio); } else { s->retry_active = false; } if (reschedule) { req0_run_send_queue(s, NULL); } nni_mtx_unlock(&s->mtx); } static void req0_ctx_init(void *arg, void *sock) { req0_sock *s = sock; req0_ctx *ctx = arg; nni_mtx_lock(&s->mtx); ctx->sock = s; ctx->recv_aio = NULL; ctx->retry = s->retry; nni_list_append(&s->contexts, ctx); nni_mtx_unlock(&s->mtx); } static void req0_ctx_fini(void *arg) { req0_ctx *ctx = arg; req0_sock *s = ctx->sock; nni_aio *aio; nni_mtx_lock(&s->mtx); if ((aio = ctx->recv_aio) != NULL) { ctx->recv_aio = NULL; nni_aio_finish_error(aio, NNG_ECLOSED); } if ((aio = ctx->send_aio) != NULL) { ctx->send_aio = NULL; nni_aio_set_msg(aio, ctx->req_msg); ctx->req_msg = NULL; nni_aio_finish_error(aio, NNG_ECLOSED); } req0_ctx_reset(ctx); nni_list_remove(&s->contexts, ctx); nni_mtx_unlock(&s->mtx); } static int req0_ctx_set_resend_time(void *arg, const void *buf, size_t sz, nni_opt_type t) { req0_ctx *ctx = arg; return (nni_copyin_ms(&ctx->retry, buf, sz, t)); } static int req0_ctx_get_resend_time(void *arg, void *buf, size_t *szp, nni_opt_type t) { req0_ctx *ctx = arg; return (nni_copyout_ms(ctx->retry, buf, szp, t)); } static void req0_run_send_queue(req0_sock *s, nni_aio_completions *sent_list) { req0_ctx *ctx; nni_aio *aio; // Note: This routine should be called with the socket lock held. while ((ctx = nni_list_first(&s->send_queue)) != NULL) { req0_pipe *p; if ((p = nni_list_first(&s->ready_pipes)) == NULL) { return; } // We have a place to send it, so send it. // If a sending error occurs that causes the message to // be dropped, we rely on the resend timer to pick it up. // We also notify the completion callback if this is the // first send attempt. nni_list_remove(&s->send_queue, ctx); // Schedule a retry. We only do this if we got // a pipe to send to. Otherwise, we should get handled // the next time that the send_queue is run. We don't do this // if the retry is "disabled" with NNG_DURATION_INFINITE. if (ctx->retry > 0) { nni_list_node_remove(&ctx->retry_node); nni_list_append(&s->retry_queue, ctx); } // Put us on the pipe list of active contexts. // This gives the pipe a chance to kick a resubmit // if the pipe is removed. nni_list_node_remove(&ctx->pipe_node); nni_list_append(&p->contexts, ctx); nni_list_remove(&s->ready_pipes, p); nni_list_append(&s->busy_pipes, p); if (nni_list_empty(&s->ready_pipes)) { nni_pollable_clear(&s->writable); } if ((aio = ctx->send_aio) != NULL) { ctx->send_aio = NULL; nni_aio_bump_count(aio, ctx->req_len); // If the list was passed in, we want to do a // synchronous completion later. if (sent_list != NULL) { nni_aio_completions_add(sent_list, aio, 0, 0); } else { nni_aio_finish(aio, 0, 0); } } // At this point, we will never give this message back to // the user, so we don't have to worry about making it // unique. We can freely clone it. // But only do so if we need to hang onto it (for potential // retries) if (ctx->retry > 0) { nni_msg_clone(ctx->req_msg); } nni_aio_set_msg(&p->aio_send, ctx->req_msg); nni_pipe_send(p->pipe, &p->aio_send); } } void req0_ctx_reset(req0_ctx *ctx) { req0_sock *s = ctx->sock; // Call with sock lock held! nni_list_node_remove(&ctx->retry_node); nni_list_node_remove(&ctx->pipe_node); nni_list_node_remove(&ctx->send_node); if (ctx->request_id != 0) { nni_id_remove(&s->requests, ctx->request_id); ctx->request_id = 0; } if (ctx->req_msg != NULL) { // Only free msg if we originally cloned it (for retries) if (ctx->retry > 0) { nni_msg_free(ctx->req_msg); } ctx->req_msg = NULL; } if (ctx->rep_msg != NULL) { nni_msg_free(ctx->rep_msg); ctx->rep_msg = NULL; } ctx->conn_reset = false; } static void req0_ctx_cancel_recv(nni_aio *aio, void *arg, nng_err rv) { req0_ctx *ctx = arg; req0_sock *s = ctx->sock; nni_mtx_lock(&s->mtx); // So it turns out that some users start receiving before waiting // for the send notification. In this case if receiving is // canceled before sending completes, we need to restore the // message for the user. It's probably a mis-design if the user // is trying to receive without waiting for sending to complete, but // it was reported in the field. Users who want to avoid this mess // should just start receiving from the send completion callback. if (ctx->send_aio != NULL) { nni_aio_set_msg(ctx->send_aio, ctx->req_msg); nni_msg_header_clear(ctx->req_msg); ctx->req_msg = NULL; nni_aio_finish_error(ctx->send_aio, NNG_ECANCELED); ctx->send_aio = NULL; nni_list_remove(&s->send_queue, ctx); } if (ctx->recv_aio == aio) { ctx->recv_aio = NULL; // Cancellation of a pending receive is treated as aborting the // entire state machine. This allows us to preserve the // semantic of exactly one receive operation per send // operation, and should be the least surprising for users. The // main consequence is that if the operation is completed // (in error or otherwise), the user must submit a new send // operation to restart the state machine. req0_ctx_reset(ctx); nni_aio_finish_error(aio, rv); } nni_mtx_unlock(&s->mtx); } static void req0_ctx_recv(void *arg, nni_aio *aio) { req0_ctx *ctx = arg; req0_sock *s = ctx->sock; nni_msg *msg; nni_mtx_lock(&s->mtx); if ((ctx->recv_aio != NULL) || ((ctx->req_msg == NULL) && (ctx->rep_msg == NULL))) { // We have already got a pending receive or have not // tried to send a request yet. // Either of these violate our basic state assumptions. int rv; if (ctx->conn_reset) { ctx->conn_reset = false; rv = NNG_ECONNRESET; } else { rv = NNG_ESTATE; } nni_mtx_unlock(&s->mtx); nni_aio_finish_error(aio, rv); return; } if ((msg = ctx->rep_msg) == NULL) { if (!nni_aio_start(aio, req0_ctx_cancel_recv, ctx)) { nni_mtx_unlock(&s->mtx); return; } ctx->recv_aio = aio; nni_mtx_unlock(&s->mtx); return; } ctx->rep_msg = NULL; // We have got a message to pass up, yay! nni_aio_set_msg(aio, msg); if (ctx == &s->master) { nni_pollable_clear(&s->readable); } nni_mtx_unlock(&s->mtx); nni_aio_finish(aio, 0, nni_msg_len(msg)); } static void req0_ctx_cancel_send(nni_aio *aio, void *arg, nng_err rv) { req0_ctx *ctx = arg; req0_sock *s = ctx->sock; nni_mtx_lock(&s->mtx); if (ctx->send_aio == aio) { // There should not be a pending reply, because we canceled // it while we were waiting. NNI_ASSERT(ctx->recv_aio == NULL); ctx->send_aio = NULL; // Restore the message back to the aio. nni_aio_set_msg(aio, ctx->req_msg); nni_msg_header_clear(ctx->req_msg); ctx->req_msg = NULL; // Cancellation of a pending receive is treated as aborting the // entire state machine. This allows us to preserve the // semantic of exactly one receive operation per send // operation, and should be the least surprising for users. The // main consequence is that if a receive operation is completed // (in error or otherwise), the user must submit a new send // operation to restart the state machine. req0_ctx_reset(ctx); nni_aio_finish_error(aio, rv); } nni_mtx_unlock(&s->mtx); } static void req0_ctx_send(void *arg, nni_aio *aio) { req0_ctx *ctx = arg; req0_sock *s = ctx->sock; nng_msg *msg = nni_aio_get_msg(aio); int rv; nni_mtx_lock(&s->mtx); if (s->closed) { nni_mtx_unlock(&s->mtx); nni_aio_finish_error(aio, NNG_ECLOSED); return; } // Sending a new request cancels the old one, including any // outstanding reply. if (ctx->recv_aio != NULL) { nni_aio_finish_error(ctx->recv_aio, NNG_ECANCELED); ctx->recv_aio = NULL; } if (ctx->send_aio != NULL) { nni_aio_set_msg(ctx->send_aio, ctx->req_msg); nni_msg_header_clear(ctx->req_msg); ctx->req_msg = NULL; nni_aio_finish_error(ctx->send_aio, NNG_ECANCELED); ctx->send_aio = NULL; nni_list_remove(&s->send_queue, ctx); } // This resets the entire state machine. req0_ctx_reset(ctx); // Insert us on the per ID hash list, so that receives can find us. if ((rv = nni_id_alloc32(&s->requests, &ctx->request_id, ctx)) != 0) { nni_mtx_unlock(&s->mtx); nni_aio_finish_error(aio, rv); return; } nni_msg_header_clear(msg); nni_msg_header_append_u32(msg, ctx->request_id); // only do asynch if we're going to defer -- this is somewhat subtle // because we can have been submitted for a non-blocking operation and // in that case we would not like to timeout the operation instantly. if (nni_list_empty(&s->ready_pipes) && !nni_aio_start(aio, req0_ctx_cancel_send, ctx)) { nni_id_remove(&s->requests, ctx->request_id); nni_mtx_unlock(&s->mtx); return; } ctx->req_len = nni_msg_len(msg); ctx->req_msg = msg; ctx->send_aio = aio; nni_aio_set_msg(aio, NULL); if (ctx->retry > 0) { ctx->retry_time = nni_clock() + ctx->retry; nni_list_append(&s->retry_queue, ctx); if (!s->retry_active) { s->retry_active = true; nni_sleep_aio(s->retry_tick, &s->retry_aio); } } // Stick us on the send_queue list. nni_list_append(&s->send_queue, ctx); req0_run_send_queue(s, NULL); nni_mtx_unlock(&s->mtx); } static void req0_sock_send(void *arg, nni_aio *aio) { req0_sock *s = arg; req0_ctx_send(&s->master, aio); } static void req0_sock_recv(void *arg, nni_aio *aio) { req0_sock *s = arg; req0_ctx_recv(&s->master, aio); } static int req0_sock_set_max_ttl(void *arg, const void *buf, size_t sz, nni_opt_type t) { req0_sock *s = arg; int ttl; int rv; if ((rv = nni_copyin_int(&ttl, buf, sz, 1, NNI_MAX_MAX_TTL, t)) == 0) { nni_atomic_set(&s->ttl, ttl); } return (rv); } static int req0_sock_get_max_ttl(void *arg, void *buf, size_t *szp, nni_opt_type t) { req0_sock *s = arg; return (nni_copyout_int(nni_atomic_get(&s->ttl), buf, szp, t)); } static int req0_sock_set_resend_time( void *arg, const void *buf, size_t sz, nni_opt_type t) { req0_sock *s = arg; int rv; rv = req0_ctx_set_resend_time(&s->master, buf, sz, t); s->retry = s->master.retry; return (rv); } static int req0_sock_get_resend_time(void *arg, void *buf, size_t *szp, nni_opt_type t) { req0_sock *s = arg; return (req0_ctx_get_resend_time(&s->master, buf, szp, t)); } static int req0_sock_set_resend_tick( void *arg, const void *buf, size_t sz, nni_opt_type t) { req0_sock *s = arg; nng_duration tick; int rv; if ((rv = nni_copyin_ms(&tick, buf, sz, t)) == 0) { nni_mtx_lock(&s->mtx); s->retry_tick = tick; nni_mtx_unlock(&s->mtx); } return (rv); } static int req0_sock_get_resend_tick(void *arg, void *buf, size_t *szp, nni_opt_type t) { req0_sock *s = arg; nng_duration tick; nni_mtx_lock(&s->mtx); tick = s->retry_tick; nni_mtx_unlock(&s->mtx); return (nni_copyout_ms(tick, buf, szp, t)); } static int req0_sock_get_send_fd(void *arg, int *fdp) { req0_sock *s = arg; return (nni_pollable_getfd(&s->writable, fdp)); } static int req0_sock_get_recv_fd(void *arg, int *fdp) { req0_sock *s = arg; return (nni_pollable_getfd(&s->readable, fdp)); } static nni_proto_pipe_ops req0_pipe_ops = { .pipe_size = sizeof(req0_pipe), .pipe_init = req0_pipe_init, .pipe_fini = req0_pipe_fini, .pipe_start = req0_pipe_start, .pipe_close = req0_pipe_close, .pipe_stop = req0_pipe_stop, }; static nni_option req0_ctx_options[] = { { .o_name = NNG_OPT_REQ_RESENDTIME, .o_get = req0_ctx_get_resend_time, .o_set = req0_ctx_set_resend_time, }, { .o_name = NULL, }, }; static nni_proto_ctx_ops req0_ctx_ops = { .ctx_size = sizeof(req0_ctx), .ctx_init = req0_ctx_init, .ctx_fini = req0_ctx_fini, .ctx_recv = req0_ctx_recv, .ctx_send = req0_ctx_send, .ctx_options = req0_ctx_options, }; static nni_option req0_sock_options[] = { { .o_name = NNG_OPT_MAXTTL, .o_get = req0_sock_get_max_ttl, .o_set = req0_sock_set_max_ttl, }, { .o_name = NNG_OPT_REQ_RESENDTIME, .o_get = req0_sock_get_resend_time, .o_set = req0_sock_set_resend_time, }, { .o_name = NNG_OPT_REQ_RESENDTICK, .o_get = req0_sock_get_resend_tick, .o_set = req0_sock_set_resend_tick, }, // terminate list { .o_name = NULL, }, }; static nni_proto_sock_ops req0_sock_ops = { .sock_size = sizeof(req0_sock), .sock_init = req0_sock_init, .sock_fini = req0_sock_fini, .sock_open = req0_sock_open, .sock_close = req0_sock_close, .sock_send = req0_sock_send, .sock_recv = req0_sock_recv, .sock_recv_poll_fd = req0_sock_get_recv_fd, .sock_send_poll_fd = req0_sock_get_send_fd, .sock_options = req0_sock_options, }; static nni_proto req0_proto = { .proto_version = NNI_PROTOCOL_VERSION, .proto_self = { REQ0_SELF, REQ0_SELF_NAME }, .proto_peer = { REQ0_PEER, REQ0_PEER_NAME }, .proto_flags = NNI_PROTO_FLAG_SNDRCV, .proto_sock_ops = &req0_sock_ops, .proto_pipe_ops = &req0_pipe_ops, .proto_ctx_ops = &req0_ctx_ops, }; int nng_req0_open(nng_socket *sock) { return (nni_proto_open(sock, &req0_proto)); }