1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
--[[
Some helper methods for useing heatmaps
]]
do return end
print("Hello from heatmap.lua!")
local prs = pairs
local iprs = ipairs
local prnt = print
local tblins,tbldel = table.insert, table.remove
local pow,sqrt,max = math.pow, math.sqrt, math.max
heatmap = {}
local function VectorDistance(vec1,vec2)
if vec1.Distance then return vec1:Distance(vec2)
else
local dist = 0
for k,v in prs(vec1) do
local add = pow(vec1[k]-vec2[k],2)
dist = dist + add
end
dist = sqrt(dist)
return dist
end
end
local function VectorLength(vec)
if vec.Length then return vec:Length()
else
local len = 0
for k,v in prs do
local add = pow(v,2)
len = len + add
end
len = sqrt(len)
return len
end
end
local function RegisterEffect(self, func, position)
local stbl = {position,func}
tblins(self.heatpoints,#self.heatpoints+1,stbl)
end
local function CalculateFor(self, position)
local sh = self.heatpoints[1]
local total = sh[2](sh[1]-position,self.curtime)
for k=2,#self.heatpoints do
sh = self.heatpoints[k]
total, shouldremove = total + sh[2](sh[1]-position,self.curtime)
if(shouldremove) then tbldel(k) end
end
return total
end
--- Creates a heat map to keep track of effects.
-- Effects must be structured as a function that takes a vector (position from origin of effect) and number(time) and returns a value
-- @return a heatmap object
function heatmap.CreateHeatMap()
local tbl = {}
tbl.heatpoints = {}
tbl.curtime = 0
tbl.RegisterEffect = RegisterEffect
tbl.CalculateFor = CalculateFor
return tbl
end
function heatmap.UniformInfiniteForever(field)
return function(vector, time)
return field, false
end
end
function heatmap.UniformInfiniteLinearDecay(field,decayrate)
return function(vector,time)
return heatmap.UniformInfiniteForever(field)-(time*decayrate), false
end
end
function heatmap.UniformInfiniteLinearDecayGrounded(field,decayrate)
local removetime = field/decayrate
return function(vector,time)
return max(heatmap.UniformInfiniteLinearDecay(field,decayrate),0), time < removetime
end
end
function heatmap.LinearInfiniteForever(field)
return function(vector, time)
return field - VectorLength(vector), false
end
end
function heatmap.LinearInfiniteForeverGrounded(field)
return function(vector,time)
return max(heatmap.LinearInfiniteForever(field),0), false
end
end
function heatmap.LinearInfiniteLinearDecay(field,decayrate)
return function(vector, time)
return field - VectorLength(vector) - (time*decayrate), false
end
end
function heatmap.LinearInfiniteLinearDecayGrounded(field,decayrate)
local removetime = field/decayrate
return function(vector, time)
return max(field-VectorLength(vector) - (time*decayrate),0), time < removetime
end
end
function heatmap.ParabolicInfiniteForever(field, power)
return function(vector, time)
return field - pow(VectorLength(vector),power)/pow(100,power), false
end
end
function heatmap.ParabolicInfiniteForeverGrounded(field, power)
return function(vector, time)
local pre = heatmap.ParabolicInfiniteForever(field, power)
--print("pre is:")
--print(pre)
return max(pre,0), false
end
end
function heatmap.ParabolicInfiniteLinearDecay(field,power,decayrate)
return function(vector, time)
return heatmap.ParabolicInfiniteForever(field, power) - (time*decayrate), false
end
end
function heatmap.ParabolicInfiniteLinearDecayGrounded(field,power,decayrate)
local removetime = field/decayrate
return function(vector,time)
return max(heatmap.ParabolicInfiniteLinearDecay(field,power,decayrate),0), time < removetime
end
end
return heatmap
|