1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
--Keeps track of layers
state = require "global"
disp = require "dispatch"
graph = require "graph"
mod = ...
class Icon
new: (squaretype,position,layer) =>
@type = squaretype
@node = am.group! ^ {am.translate(position.x + 16, position.y - 16) ^ am.scale(1) ^ am.rotate(0) ^ am.sprite(@type.img_src)}
layer.node\append(@node)
@x = position.x
@y = position.y
__tostring: =>
return string.format("<%s at (%d, %d)>",@type.type,@x,@y)
prototypes = {}
class IconPrototype
new: (squaretype,img,cantoggle) =>
@type = squaretype
@img_src = img
prototypes[@type] = @
@cantoggle = cantoggle
totile: (x,y,layer) =>
ret = Icon(@,vec2(x,y),layer)
ret
IconPrototype("liquid fuel thruster","data/icon_engine.png",false)
IconPrototype("ion thruster","data/icon_ionthrust.png",false)
IconPrototype("fuel pipe","data/pipe1111.png",true)
IconPrototype("liquid fuel tank","data/icon_fueltank.png",false)
IconPrototype("electric wire","data/icon_wire.png",true)
IconPrototype("generator", "data/icon_generator.png",false)
IconPrototype("battery","data/icon_battery.png",false)
IconPrototype("high volt cabel","data/icon_high_voltage.png",true)
IconPrototype("high volt source","data/icon_hv_source.png",false)
IconPrototype("laser beam","data/icon_laser_turret.png",false)
mod.check_paths = (tbl) ->
for k, path in pairs(tbl)
pathresult = graph.path(path[1],path[2],path[3],true,mod.Layer.tiles_adjacent)
if pathresult == nil
print("Failed to find path from",path[1], "to",path[2])
return false
return true
mod.check_hv_paths = (tbl) ->
for k, path in pairs(tbl)
pathresult = graph.path(path[1],path[2],path[3],true,mod.Layer.hv_tiles_adjacent)
print("pathresult was:",pathresult)
if pathresult == nil
print("Failed to find path from",path[1], "to",path[2])
return false
return true
electricals = {
["electric wire"]: true
["generator"]: true
["ion thruster"]: true
}
hvs = {
["high volt cabel"]: true
["high volt source"]: true
["laser beam"]: true
}
class Layer
new: (layername, default_node, node_cost, layer_icon) =>
@name = layername
@grid = {}
@node = am.group!
@nodelist = {} --A node least to easily remove all of them
@default = default_node
@icon = layer_icon
@cost = node_cost
print("Setting node action")
mark_square: (x,y,proto) =>
print("Marking square:",x,y)
assert(proto,"Marking a square on a layer must have a type")
assert(prototypes[proto], "Unkown square type:" .. proto)
gpos = disp.normal_to_window(vec2(x*32,y*32))
item = prototypes[proto]\totile(gpos.x, gpos.y, @)
@grid[x] = @grid[x] or {}
@grid[x][y] = item
item
tiles_adjacent: (node, neighbor) ->
xdist = math.abs(neighbor.x - node.x)
ydist = math.abs(neighbor.y - node.y)
dist = ( xdist ^ 2) + (ydist ^ 2)
ret = false
if dist == (32 ^ 2)
ret = true
ret
hv_tiles_adjacent: (node,neighbor) ->
if mod.Layer.tiles_adjacent(node,neighbor)
print("neighbor type.type:",neighbor.type.type)
if hvs[node.type.type] and electricals[neighbor.type.type]
error("High volt-normal error")
return true
else
return false
get_tile: (x,y) =>
if @grid[x] and @grid[x][y]
return @grid[x][y]
return nil
flat_tiles: =>
ret = {}
for _,row in pairs @grid
for _,peice in pairs row
table.insert(ret,peice)
ret
clear_square: (x,y) =>
t = @get_tile(x,y)
@node\remove(t.node)
@grid[x][y] = nil
print("Clearing:",t)
toggle_square: (x,y,t) =>
t = @get_tile(x,y)
if t
@clear_square(x,y)
else
@mark_square(x,y,t or @default)
print_grid: =>
for row = 1, math.floor((state.win.bottom - state.win.top) / 32)
this_row = {}
for col = 1, math.floor((state.win.right - state.win.left) / 32)
if @grid[row] and @grid[row][col]
table.insert(this_row,"1")
else
table.insert(this_row,"0")
print(table.concat(this_row))
mod.Layer = Layer
mod.create_layer = (layername) ->
ret = Layer(layername)
mod.gen_scene = () ->
mod.node = am.group!
mod
|