1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
--[[
Fuzzel v1.2 - Alexander "Apickx" Pickering
Entered into the public domain June 2, 2016
You are not required to, but consider putting a link to the source in your file's comments!
Some helper functions for calculateing distance between two strings
Provides:
fuzzel.LevenshteinDistance_extended(string_first, string_second, number_addcost, number_substituecost, number_deletecost)
Calculates the Levenshtein Distance between two strings, useing the costs given. "Real" Levenshtein Distance uses values 1,1,1 for costs.
returns number_distance
fuzzel.LevenshteinDistance(string_first, strings_second)
Calculates the "real" Levenshtein Distance
returns number_distance
fuzzel.LevensteinRatio(string_first, string_second)
The Levenshtein Ratio divided by the first string's length. Useing a ratio is a decent way to determin if a spelling is "close enough"
returns number_distance
fuzzel.DamerauLevenshteinDistance_extended(string_first, string_second, number_addcost, number_substituecost, number_deletecost, number_transpositioncost)
Damerau-Levenshtein Distance is almost exactly like Levenshtein Distance, with the caveat that two letters next to each other, with swapped positions only counts as "one" cost (in "real" Damerau-Levenshtein Distance)
returns number
fuzzel.DamerauLevenshteinDistance(stirng_first, strings_second)
Calculates the "real" Damerau-Levenshtein Distance
returns number
fuzzel.DamerauLevenshteinRatio(string_first, string_second)
The Damerau-Levenshtein Distance divided by the first string's length
returns number_ratio
fuzzel.HammingDistance(string_first, string_second)
Purely the number of substitutions needed to change one string into another. Note that both strings must be the same length.
returns number_distance
fuzzel.HammingRatio(string_first, string_second)
The hamming distance divided by the length of the first string
returns number_ratio
fuzzel.FuzzyFindDistance(string_needle, vararg_in)
in may be either a table, or a list of arguments. fuzzel.FuzzySearchDistance will find the string that most closely resembles needle, based on Damerau-Levenshtein Distance. If multiple options have the same distance, it will return the first one encountered (This may not be in any sort of order!)
returns string_closest, number_distance
fuzzel.FuzzyFindRatio(string_needle, vararg_in)
in may be either a table, or a list of arguments. Same as above, except it returns the string with the closest Damerau-Levenshtein ratio.
returns string_closest, nubmer_ratio
fuzzel.FuzzySortDistance(string_needle, vararg_in)
Sorts either the table, or the arguments, and returns a table. Uses Damerau-Levenshtein Distance
returns table_sorted
fuzzel.FuzzySortRatio(string needle, vararg_in)
Same as above, but uses Damerau-Levenshtein Ratio instead
returns table_sorted
Example:
Returns a function that will return the closest string to the string it was passed
-----------------FuzzelExample.lua------------------
--Include the module
local fuzzel = require("fuzzel.lua")
--A couple of options
local options = {
"Fat Cat",
"Lazy Dog",
"Brown Fox",
}
--And use it, to see what option closest matches "Lulzy Cat"
local close,distance = fuzzel.FuzzyFindDistance("Lulzy Cat", options)
print("\"Lulzy Cat\" is close to \"" .. close .. "\", distance:" .. distance)
--Sort the options to see the order in which they most closely match "Frag God"
print("\"Frag God\" is closest to:")
for k,v in ipairs(fuzzel.FuzzySortRatio("Frag God",options)) do
print(k .. "\t:\t" .. v)
end
-------------End FuzzelExample.lua------------------
Outputs:
"Lulzy Cat" is close to "Fat Cat"
"Frag God" is closest to:
1 : Fat Cat
2 : Lazy Dog
3 : Brown Fox
Some easy-to-use mnemonics
fuzzel.ld_e = fuzzel.LevenshteinDistance_extended
fuzzel.ld = fuzzel.LevenshteinDistance
fuzzel.lr = fuzzel.LevensteinRatio
fuzzel.dld_e = fuzzel.DamerauLevenshteinDistance_extended
fuzzel.dld = fuzzel.DamerauLevenshteinDistance
fuzzel.dlr = fuzzel.DamerauLevenshteinRatio
fuzzel.hd = fuzzel.HammingDistance
fuzzel.hr = fuzzel.HammingRatio
fuzzel.ffd = fuzzel.FuzzyFindDistance
fuzzel.ffr = fuzzel.FuzzyFindRatio
fuzzel.fsd = fuzzel.FuzzySortDistance
fuzzel.fsr = fuzzel.FuzzySortRatio
]]--You probably don't want to touch anything past this point
--Assign locals to these to the minifier can compress the file better
local strlen,chrat,min,asrt,prs,iprs,typ,upack,tblins,tblsrt = string.len,string.byte,math.min,assert,pairs,ipairs,type,unpack,table.insert,table.sort
local fuzzel = {}
--A clever way to allow the minifier to minify function names, this basically just assigns variables with their string equivalent.
local da, le, di, ra, fu, fi, so, ex, ha = "Damerau", "Levenshtein", "Distance", "Ratio", "Fuzzy", "Find", "Sort", "_extended", "Hamming"
local LevenshteinDistance_extended,LevenshteinDistance,LevenshteinRatio,DamerauLevenshteinDistance_extended,DamerauLevenshteinDistance,DamerauLevenshteinRatio,FuzzyFindDistance,FuzzyFindRatio,FuzzySortDistance,FuzzySortRatio,HammingDistance,HammingRatio = le..di..ex,le..di,le..ra,da..le..di..ex,da..le..di,da..le..ra,fu..fi..di,fu..fi..ra,fu..so..di,fu..so..ra,ha..di,ha..ra
local function genericDistance( stringa, stringb, addcost, subcost, delcost, ...)
--Length of each string
local salen, sblen = strlen(stringa), strlen(stringb)
--Create a 0 matrix the size of len(a) x len(b)
local dyntbl = {}
for i = 0,salen do
dyntbl[i] = {}
for j = 0,sblen do
dyntbl[i][j] = 0
end
end
--Initalize the matrix
for i = 1,salen do
dyntbl[i][0] = i
end
for j = 1,sblen do
dyntbl[0][j] = j
end
--And build up the matrix based on costs-so-far
for j = 1,sblen do
for i = 1,salen do
local ca,cb = chrat(stringa,i),chrat(stringb,j)
dyntbl[i][j] = min(
dyntbl[i-1][j] + delcost, --deletion
dyntbl[i][j-1] + addcost, --insertion
dyntbl[i-1][j-1] + (ca == cb and 0 or subcost) --substituion
)
if arg[1] and i > 1 and j > 1 and ca == chrat(stringb,j-1) and chrat(stringa,i-1) == cb then
dyntbl[i][j] = min(dyntbl[i][j],
dyntbl[i-2][j-2] + (ca == cb and 0 or arg[2])) --transposition
end
end
end
return dyntbl[salen][sblen]
end
fuzzel[LevenshteinDistance_extended] = function(stringa, stringb, addcost, subcost, delcost)
return genericDistance(stringa, stringb, addcost, subcost, delcost)
end
fuzzel.ld_e = fuzzel[LevenshteinDistance_extended]
fuzzel[LevenshteinDistance] = function(stringa,stringb)
return fuzzel.ld_e(stringa,stringb,1,1,1)
end
fuzzel.ld = fuzzel[LevenshteinDistance]
fuzzel[LevenshteinRatio] = function(stringa,stringb)
return fuzzel.ld(stringa,stringb) / strlen(stringa)
end
fuzzel.lr = fuzzel[LevenshteinRatio]
fuzzel[DamerauLevenshteinDistance_extended] = function(stringa, stringb, addcost, subcost, delcost, trncost)
return genericDistance(stringa,stringb,addcost,subcost,delcost,true,trncost)
end
fuzzel.dld_e = fuzzel[DamerauLevenshteinDistance_extended]
fuzzel[DamerauLevenshteinDistance] = function(stringa,stringb)
return fuzzel.dld_e(stringa,stringb,1,1,1,1)
end
fuzzel.dld = fuzzel[DamerauLevenshteinDistance]
fuzzel[DamerauLevenshteinRatio] = function(stringa,stringb)
return fuzzel.dld(stringa,stringb) / strlen(stringa)
end
fuzzel.dlr = fuzzel[DamerauLevenshteinRatio]
fuzzel[HammingDistance] = function(stringa,stringb)
local len,dist = strlen(stringa),0
asrt(len == strlen(stringb),"Hamming Distance cannot be calculated on two strings of different lengths:\"" .. stringa .. "\" \"" .. stringb .. "\"")
for i = 1,len do
dist = dist + ((chrat(stringa,i) ~= chrat(stringb,i)) and 1 or 0)
end
return dist
end
fuzzel.hd = fuzzel[HammingDistance]
fuzzel[HammingRatio] = function(stringa,stringb)
return fuzzel.hd(stringa,stringb) / strlen(stringa)
end
fuzzel.hr = fuzzel[HammingRatio]
local function FuzzySearch(str,func,...)
--Allow varargs, or a table
local looparg = typ(arg[1]) == "table" and arg[1] or arg
--Find the string with the shortest distance to the string we were supplied
local tmin,sout = func(looparg[1],str),looparg[1]
for k,v in prs(looparg) do
local t = func(v,str)
if t <= tmin then
tmin,sout = t,k
end
end
return looparg[sout], tmin
end
fuzzel[FuzzyFindDistance] = function(str,...)
return upack{FuzzySearch(str,fuzzel.dld,...)}
end
fuzzel.ffd = fuzzel[FuzzyFindDistance]
fuzzel[FuzzyFindRatio] = function(str,...)
return upack{FuzzySearch(str,fuzzel.dlr,...)}
end
local function FuzzySort(str, func, ...)
--allow varargs, or a table
local looparg = typ(arg[1]) == "table" and arg[1] or arg
--Roughly sort everything by it's distance to the string
local usorted,sorted,otbl = {},{},{}
for k,v in prs(looparg) do
local dist = func(str,v)
if usorted[dist] == nil then
usorted[dist] = {}
tblins(sorted,dist)
end
tblins(usorted[dist],v)
end
--Actually sort them into something can can be iterated with ipairs
tblsrt(sorted)
--Then build our output table
for k,v in iprs(sorted) do
for i,j in prs(usorted[v]) do
tblins(otbl,j)
end
end
return otbl
end
fuzzel.ffr = fuzzel[FuzzyFindRatio]
fuzzel[FuzzySortDistance] = function(str,...)
return FuzzySort(str,fuzzel.dld,...)
end
fuzzel.fsd = fuzzel[FuzzySortDistance]
fuzzel[FuzzySortRatio] = function(str,...)
return FuzzySort(str,fuzzel.dlr,...)
end
fuzzel.fsr = fuzzel[FuzzySortRatio]
return fuzzel
|