aboutsummaryrefslogtreecommitdiff
path: root/fuzzel.lua
blob: 6aad45f8aaf58d8b444a185087b3a1ede9e5a272 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
--[[
    Fuzzel v1.3 - Alexander "Apickx" Pickering
    Entered into the public domain June 2, 2016
    You are not required to, but consider putting a link to the source in your file's comments!

    Some helper functions for calculateing distance between two strings

    Provides:
        fuzzel.LevenshteinDistance_extended(string_first, string_second, number_addcost, number_substituecost, number_deletecost)
            Calculates the Levenshtein Distance between two strings, useing the costs given. "Real" Levenshtein Distance uses values 1,1,1 for costs.
            returns number_distance

        fuzzel.LevenshteinDistance(string_first, strings_second)
            Calculates the "real" Levenshtein Distance
            returns number_distance

        fuzzel.LevensteinRatio(string_first, string_second)
            The Levenshtein Ratio divided by the first string's length. Useing a ratio is a decent way to determin if a spelling is "close enough"
            returns number_distance

        fuzzel.DamerauLevenshteinDistance_extended(string_first, string_second, number_addcost, number_substituecost, number_deletecost, number_transpositioncost)
            Damerau-Levenshtein Distance is almost exactly like Levenshtein Distance, with the caveat that two letters next to each other, with swapped positions only counts as "one" cost (in "real" Damerau-Levenshtein Distance)
            returns number

        fuzzel.DamerauLevenshteinDistance(stirng_first, strings_second)
            Calculates the "real" Damerau-Levenshtein Distance
            returns number

        fuzzel.DamerauLevenshteinRatio(string_first, string_second)
            The Damerau-Levenshtein Distance divided by the first string's length
            returns number_ratio

        fuzzel.HammingDistance(string_first, string_second)
            Purely the number of substitutions needed to change one string into another. Note that both strings must be the same length.
            returns number_distance

        fuzzel.HammingRatio(string_first, string_second)
            The hamming distance divided by the length of the first string
            returns number_ratio

        fuzzel.FuzzyFindDistance(string_needle, vararg_in)
            in may be either a table, or a list of arguments. fuzzel.FuzzySearchDistance will find the string that most closely resembles needle, based on Damerau-Levenshtein Distance. If multiple options have the same distance, it will return the first one encountered (This may not be in any sort of order!)
            returns string_closest, number_distance

        fuzzel.FuzzyFindRatio(string_needle, vararg_in)
            in may be either a table, or a list of arguments. Same as above, except it returns the string with the closest Damerau-Levenshtein ratio.
            returns string_closest, nubmer_ratio

        fuzzel.FuzzySortDistance(string_needle, vararg_in)
            Sorts either the table, or the arguments, and returns a table. Uses Damerau-Levenshtein Distance
            returns table_sorted

        fuzzel.FuzzySortRatio(string needle, vararg_in)
            Same as above, but uses Damerau-Levenshtein Ratio instead
            returns table_sorted

        fuzzel.FuzzyAutocompleteDistance(string_needle, vararg in)
            vararg_in can be either a table, or a list of entries, this will fuzzy sort based on the length of the input, which makes it better at autocompletion than fuzzy sorting. Uses Damerau-Levenshtein Distance.
            returns table_sorted

        fuzzel.FuzzyAutocompleteRatio(string_needle, vararg_in)
            Same as above, but uses DamerauLevenshteinRatio
            returns table_sorted

    Example:
        Returns a function that will return the closest string to the string it was passed
        -----------------FuzzelExample.lua------------------
        --Include the module
        local fuzzel = require("fuzzel.lua")

        --A couple of options
        local options = {
            "Fat Cat",
            "Lazy Dog",
            "Brown Fox",
        }

        --And use it, to see what option closest matches "Lulzy Cat"
        local close,distance = fuzzel.FuzzyFindDistance("Lulzy Cat", options)
        print("\"Lulzy Cat\" is close to \"" .. close .. "\", distance:" .. distance)

        --Sort the options to see the order in which they most closely match "Frag God"
        print("\"Frag God\" is closest to:")
        for k,v in ipairs(fuzzel.FuzzySortRatio("Frag God",options)) do
            print(k .. "\t:\t" .. v)
        end
        -------------End FuzzelExample.lua------------------
        Outputs:
            "Lulzy Cat" is close to "Fat Cat"
            "Frag God" is closest to:
            1       :       Fat Cat
            2       :       Lazy Dog
            3       :       Brown Fox

    Some easy-to-use mnemonics
        fuzzel.ld_e = fuzzel.LevenshteinDistance_extended
        fuzzel.ld = fuzzel.LevenshteinDistance
        fuzzel.lr = fuzzel.LevensteinRatio
        fuzzel.dld_e = fuzzel.DamerauLevenshteinDistance_extended
        fuzzel.dld = fuzzel.DamerauLevenshteinDistance
        fuzzel.dlr = fuzzel.DamerauLevenshteinRatio
        fuzzel.hd = fuzzel.HammingDistance
        fuzzel.hr = fuzzel.HammingRatio
        fuzzel.ffd = fuzzel.FuzzyFindDistance
        fuzzel.ffr = fuzzel.FuzzyFindRatio
        fuzzel.fsd = fuzzel.FuzzySortDistance
        fuzzel.fsr = fuzzel.FuzzySortRatio
        fuzzel.fad = fuzzel.FuzzyAutocompleteDistance
        fuzzel.far = fuzzel.FuzzyAutocompleteRatio

]]--You probably don't want to touch anything past this point

--Assign locals to these to the minifier can compress the file better
local strlen,chrat,min,asrt,prs,iprs,typ,upack,tblins,tblsrt,strsub,tru,fal = string.len,string.byte,math.min,assert,pairs,ipairs,type,unpack,table.insert,table.sort,string.sub,true,false

local fuzzel = {}

--A clever way to allow the minifier to minify function names, this basically just assigns variables with their string equivalent.
local da, le, di, ra, fu, fi, so, ex, ha, au = "Damerau", "Levenshtein", "Distance", "Ratio", "Fuzzy", "Find", "Sort", "_extended", "Hamming", "Autocomplete"
local LevenshteinDistance_extended,LevenshteinDistance,LevenshteinRatio,DamerauLevenshteinDistance_extended,DamerauLevenshteinDistance,DamerauLevenshteinRatio,FuzzyFindDistance,FuzzyFindRatio,FuzzySortDistance,FuzzySortRatio,HammingDistance,HammingRatio,FuzzyAutocompleteDistance,FuzzyAutocompleteRatio = le..di..ex,le..di,le..ra,da..le..di..ex,da..le..di,da..le..ra,fu..fi..di,fu..fi..ra,fu..so..di,fu..so..ra,ha..di,ha..ra,fu..au..di,fu..au..ra

local function genericDistance( stringa, stringb, addcost, subcost, delcost, ...)
    local arg = {...}

    --Length of each string
    local salen, sblen = strlen(stringa), strlen(stringb)

    --Create a 0 matrix the size of len(a) x len(b)
    local dyntbl = {}
    for i = 0,salen do
        dyntbl[i] = {}
        for j = 0,sblen do
            dyntbl[i][j] = 0
        end
    end

    --Initalize the matrix
    for i = 1,salen do
        dyntbl[i][0] = i
    end
    for j = 1,sblen do
        dyntbl[0][j] = j
    end

    --And build up the matrix based on costs-so-far
    for j = 1,sblen do
        for i = 1,salen do
            local ca,cb = chrat(stringa,i),chrat(stringb,j)
            dyntbl[i][j] = min(
                dyntbl[i-1][j] + delcost, --deletion
                dyntbl[i][j-1] + addcost, --insertion
                dyntbl[i-1][j-1] + (ca == cb and 0 or subcost) --substituion
            )
            if arg[1] and i > 1 and j > 1 and ca == chrat(stringb,j-1) and chrat(stringa,i-1) == cb then
                dyntbl[i][j] = min(dyntbl[i][j],
                    dyntbl[i-2][j-2] + (ca == cb and 0 or arg[2])) --transposition
            end
        end
    end

    return dyntbl[salen][sblen]
end

fuzzel[LevenshteinDistance_extended] = function(stringa, stringb, addcost, subcost, delcost)
    return genericDistance(stringa, stringb, addcost, subcost, delcost)
end
fuzzel.ld_e = fuzzel[LevenshteinDistance_extended]

fuzzel[LevenshteinDistance] = function(stringa,stringb)
    return fuzzel.ld_e(stringa,stringb,1,1,1)
end
fuzzel.ld = fuzzel[LevenshteinDistance]

fuzzel[LevenshteinRatio] = function(stringa,stringb)
    return fuzzel.ld(stringa,stringb) / strlen(stringa)
end
fuzzel.lr = fuzzel[LevenshteinRatio]

fuzzel[DamerauLevenshteinDistance_extended] = function(stringa, stringb, addcost, subcost, delcost, trncost)
    return genericDistance(stringa,stringb,addcost,subcost,delcost,tru,trncost)
end
fuzzel.dld_e = fuzzel[DamerauLevenshteinDistance_extended]

fuzzel[DamerauLevenshteinDistance] = function(stringa,stringb)
    return fuzzel.dld_e(stringa,stringb,1,1,1,1)
end
fuzzel.dld = fuzzel[DamerauLevenshteinDistance]

fuzzel[DamerauLevenshteinRatio] = function(stringa,stringb)
    return fuzzel.dld(stringa,stringb) / strlen(stringa)
end
fuzzel.dlr = fuzzel[DamerauLevenshteinRatio]

fuzzel[HammingDistance] = function(stringa,stringb)
    local len,dist = strlen(stringa),0
    asrt(len == strlen(stringb), ha.." "..di.." cannot be calculated on two strings of different lengths:\"" .. stringa .. "\" \"" .. stringb .. "\"")
    for i = 1,len do
        dist = dist + ((chrat(stringa,i) ~= chrat(stringb,i)) and 1 or 0)
    end
    return dist
end
fuzzel.hd = fuzzel[HammingDistance]

fuzzel[HammingRatio] = function(stringa,stringb)
    return fuzzel.hd(stringa,stringb) / strlen(stringa)
end
fuzzel.hr = fuzzel[HammingRatio]

local function FuzzySearch(str,func,...)
    local arg = {...}

    --Allow varargs, or a table
    local looparg = typ(arg[1]) == "table" and arg[1] or arg

    --Find the string with the shortest distance to the string we were supplied
    local tmin,sout = func(looparg[1],str),looparg[1]
    for k,v in prs(looparg) do
        local t = func(v,str)
        if t <= tmin then
            tmin,sout = t,k
        end
    end
    return looparg[sout], tmin
end

fuzzel[FuzzyFindDistance] = function(str,...)
    return upack{FuzzySearch(str,fuzzel.dld,...)}
end
fuzzel.ffd = fuzzel[FuzzyFindDistance]

fuzzel[FuzzyFindRatio] = function(str,...)
    return upack{FuzzySearch(str,fuzzel.dlr,...)}
end

local function FuzzySort(str, func, short, ...)
    local arg = {...}

    --allow varargs, or a table
    local looparg = typ(arg[1]) == "table" and arg[1] or arg

    --Roughly sort everything by it's distance to the string
    local usorted,sorted,otbl,slen = {},{},{},strlen(str)
    for k,v in prs(looparg) do
        local sstr = short and strsub(v,0,slen) or v
        local dist = func(str,sstr)
        if usorted[dist] == nil then
            usorted[dist] = {}
            tblins(sorted,dist)
        end
        tblins(usorted[dist],v)
    end

    --Actually sort them into something can can be iterated with ipairs
    tblsrt(sorted)

    --Then build our output table
    for k,v in iprs(sorted) do
        for i,j in prs(usorted[v]) do
            tblins(otbl,j)
        end
    end
    return otbl
end
fuzzel.ffr = fuzzel[FuzzyFindRatio]

fuzzel[FuzzySortDistance] = function(str,...)
    return FuzzySort(str,fuzzel.dld,fal,...)
end
fuzzel.fsd = fuzzel[FuzzySortDistance]

fuzzel[FuzzySortRatio] = function(str,...)
    return FuzzySort(str,fuzzel.dlr,fal,...)
end
fuzzel.fsr = fuzzel[FuzzySortRatio]

fuzzel[FuzzyAutocompleteDistance] = function(str, ...)
    return FuzzySort(str,fuzzel.dld,tru,...)
end
fuzzel.fad = fuzzel[FuzzyAutocompleteDistance]

fuzzel[FuzzyAutocompleteRatio] = function(str,...)
    return FuzzySort(str,fuzzel.dlr,tru,...)
end
fuzzel.far = fuzzel[FuzzyAutocompleteRatio]

return fuzzel