diff options
| author | Mirrorbot <mirrorbot@cogarr.net> | 2025-12-27 17:53:06 -0600 |
|---|---|---|
| committer | Mirrorbot <mirrorbot@cogarr.net> | 2025-12-27 17:53:06 -0600 |
| commit | 71e94ee161447b84c0eaabf6567f8fa62262cd3e (patch) | |
| tree | 391064cc6173a6fe75069af2fdc1978af12f623e /include/vector3d.h | |
| download | irrlicht-master.tar.gz irrlicht-master.tar.bz2 irrlicht-master.zip | |
Diffstat (limited to 'include/vector3d.h')
| -rw-r--r-- | include/vector3d.h | 458 |
1 files changed, 458 insertions, 0 deletions
diff --git a/include/vector3d.h b/include/vector3d.h new file mode 100644 index 0000000..fd6c50d --- /dev/null +++ b/include/vector3d.h @@ -0,0 +1,458 @@ +// Copyright (C) 2002-2012 Nikolaus Gebhardt
+// This file is part of the "Irrlicht Engine".
+// For conditions of distribution and use, see copyright notice in irrlicht.h
+
+#ifndef __IRR_POINT_3D_H_INCLUDED__
+#define __IRR_POINT_3D_H_INCLUDED__
+
+#include "irrMath.h"
+
+namespace irr
+{
+namespace core
+{
+
+ //! 3d vector template class with lots of operators and methods.
+ /** The vector3d class is used in Irrlicht for three main purposes:
+ 1) As a direction vector (most of the methods assume this).
+ 2) As a position in 3d space (which is synonymous with a direction vector from the origin to this position).
+ 3) To hold three Euler rotations, where X is pitch, Y is yaw and Z is roll.
+ */
+ template <class T>
+ class vector3d
+ {
+ public:
+ //! Default constructor (null vector).
+ vector3d() : X(0), Y(0), Z(0) {}
+ //! Constructor with three different values
+ vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
+ //! Constructor with the same value for all elements
+ explicit vector3d(T n) : X(n), Y(n), Z(n) {}
+ //! Copy constructor
+ vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
+
+ // operators
+
+ vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
+
+ vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
+
+ vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
+ vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
+ vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
+ vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
+
+ vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
+ vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
+ vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
+ vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
+
+ vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
+ vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
+ vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
+ vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
+
+ vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
+ vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
+ vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
+ vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
+
+ //! sort in order X, Y, Z. Equality with rounding tolerance.
+ bool operator<=(const vector3d<T>&other) const
+ {
+ return (X<other.X || core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
+ (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
+ }
+
+ //! sort in order X, Y, Z. Equality with rounding tolerance.
+ bool operator>=(const vector3d<T>&other) const
+ {
+ return (X>other.X || core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
+ (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
+ }
+
+ //! sort in order X, Y, Z. Difference must be above rounding tolerance.
+ bool operator<(const vector3d<T>&other) const
+ {
+ return (X<other.X && !core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
+ (core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
+ }
+
+ //! sort in order X, Y, Z. Difference must be above rounding tolerance.
+ bool operator>(const vector3d<T>&other) const
+ {
+ return (X>other.X && !core::equals(X, other.X)) ||
+ (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
+ (core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
+ }
+
+ //! use weak float compare
+ bool operator==(const vector3d<T>& other) const
+ {
+ return this->equals(other);
+ }
+
+ bool operator!=(const vector3d<T>& other) const
+ {
+ return !this->equals(other);
+ }
+
+ // functions
+
+ //! returns if this vector equals the other one, taking floating point rounding errors into account
+ bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
+ {
+ return core::equals(X, other.X, tolerance) &&
+ core::equals(Y, other.Y, tolerance) &&
+ core::equals(Z, other.Z, tolerance);
+ }
+
+ vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
+ vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
+
+ //! Get length of the vector.
+ T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
+
+ //! Get squared length of the vector.
+ /** This is useful because it is much faster than getLength().
+ \return Squared length of the vector. */
+ T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
+
+ //! Get the dot product with another vector.
+ T dotProduct(const vector3d<T>& other) const
+ {
+ return X*other.X + Y*other.Y + Z*other.Z;
+ }
+
+ //! Get distance from another point.
+ /** Here, the vector is interpreted as point in 3 dimensional space. */
+ T getDistanceFrom(const vector3d<T>& other) const
+ {
+ return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
+ }
+
+ //! Returns squared distance from another point.
+ /** Here, the vector is interpreted as point in 3 dimensional space. */
+ T getDistanceFromSQ(const vector3d<T>& other) const
+ {
+ return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
+ }
+
+ //! Calculates the cross product with another vector.
+ /** \param p Vector to multiply with.
+ \return Crossproduct of this vector with p. */
+ vector3d<T> crossProduct(const vector3d<T>& p) const
+ {
+ return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
+ }
+
+ //! Returns if this vector interpreted as a point is on a line between two other points.
+ /** It is assumed that the point is on the line.
+ \param begin Beginning vector to compare between.
+ \param end Ending vector to compare between.
+ \return True if this vector is between begin and end, false if not. */
+ bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
+ {
+ const T f = (end - begin).getLengthSQ();
+ return getDistanceFromSQ(begin) <= f &&
+ getDistanceFromSQ(end) <= f;
+ }
+
+ //! Normalizes the vector.
+ /** In case of the 0 vector the result is still 0, otherwise
+ the length of the vector will be 1.
+ \return Reference to this vector after normalization. */
+ vector3d<T>& normalize()
+ {
+ f64 length = X*X + Y*Y + Z*Z;
+ if (length == 0 ) // this check isn't an optimization but prevents getting NAN in the sqrt.
+ return *this;
+ length = core::reciprocal_squareroot(length);
+
+ X = (T)(X * length);
+ Y = (T)(Y * length);
+ Z = (T)(Z * length);
+ return *this;
+ }
+
+ //! Sets the length of the vector to a new value
+ vector3d<T>& setLength(T newlength)
+ {
+ normalize();
+ return (*this *= newlength);
+ }
+
+ //! Inverts the vector.
+ vector3d<T>& invert()
+ {
+ X *= -1;
+ Y *= -1;
+ Z *= -1;
+ return *this;
+ }
+
+ //! Rotates the vector by a specified number of degrees around the Y axis and the specified center.
+ /** \param degrees Number of degrees to rotate around the Y axis.
+ \param center The center of the rotation. */
+ void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
+ {
+ degrees *= DEGTORAD64;
+ f64 cs = cos(degrees);
+ f64 sn = sin(degrees);
+ X -= center.X;
+ Z -= center.Z;
+ set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
+ X += center.X;
+ Z += center.Z;
+ }
+
+ //! Rotates the vector by a specified number of degrees around the Z axis and the specified center.
+ /** \param degrees: Number of degrees to rotate around the Z axis.
+ \param center: The center of the rotation. */
+ void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
+ {
+ degrees *= DEGTORAD64;
+ f64 cs = cos(degrees);
+ f64 sn = sin(degrees);
+ X -= center.X;
+ Y -= center.Y;
+ set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
+ X += center.X;
+ Y += center.Y;
+ }
+
+ //! Rotates the vector by a specified number of degrees around the X axis and the specified center.
+ /** \param degrees: Number of degrees to rotate around the X axis.
+ \param center: The center of the rotation. */
+ void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
+ {
+ degrees *= DEGTORAD64;
+ f64 cs = cos(degrees);
+ f64 sn = sin(degrees);
+ Z -= center.Z;
+ Y -= center.Y;
+ set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
+ Z += center.Z;
+ Y += center.Y;
+ }
+
+ //! Creates an interpolated vector between this vector and another vector.
+ /** \param other The other vector to interpolate with.
+ \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
+ Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
+ \return An interpolated vector. This vector is not modified. */
+ vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
+ {
+ const f64 inv = 1.0 - d;
+ return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
+ }
+
+ //! Creates a quadratically interpolated vector between this and two other vectors.
+ /** \param v2 Second vector to interpolate with.
+ \param v3 Third vector to interpolate with (maximum at 1.0f)
+ \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
+ Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
+ \return An interpolated vector. This vector is not modified. */
+ vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
+ {
+ // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
+ const f64 inv = (T) 1.0 - d;
+ const f64 mul0 = inv * inv;
+ const f64 mul1 = (T) 2.0 * d * inv;
+ const f64 mul2 = d * d;
+
+ return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
+ (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
+ (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
+ }
+
+ //! Sets this vector to the linearly interpolated vector between a and b.
+ /** \param a first vector to interpolate with, maximum at 1.0f
+ \param b second vector to interpolate with, maximum at 0.0f
+ \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
+ Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
+ */
+ vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
+ {
+ X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
+ Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
+ Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
+ return *this;
+ }
+
+
+ //! Get the rotations that would make a (0,0,1) direction vector point in the same direction as this direction vector.
+ /** Thanks to Arras on the Irrlicht forums for this method. This utility method is very useful for
+ orienting scene nodes towards specific targets. For example, if this vector represents the difference
+ between two scene nodes, then applying the result of getHorizontalAngle() to one scene node will point
+ it at the other one.
+ Example code:
+ // Where target and seeker are of type ISceneNode*
+ const vector3df toTarget(target->getAbsolutePosition() - seeker->getAbsolutePosition());
+ const vector3df requiredRotation = toTarget.getHorizontalAngle();
+ seeker->setRotation(requiredRotation);
+
+ \return A rotation vector containing the X (pitch) and Y (raw) rotations (in degrees) that when applied to a
+ +Z (e.g. 0, 0, 1) direction vector would make it point in the same direction as this vector. The Z (roll) rotation
+ is always 0, since two Euler rotations are sufficient to point in any given direction. */
+ vector3d<T> getHorizontalAngle() const
+ {
+ vector3d<T> angle;
+
+ const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
+ angle.Y = (T)tmp;
+
+ if (angle.Y < 0)
+ angle.Y += 360;
+ if (angle.Y >= 360)
+ angle.Y -= 360;
+
+ const f64 z1 = core::squareroot(X*X + Z*Z);
+
+ angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
+
+ if (angle.X < 0)
+ angle.X += 360;
+ if (angle.X >= 360)
+ angle.X -= 360;
+
+ return angle;
+ }
+
+ //! Get the spherical coordinate angles
+ /** This returns Euler degrees for the point represented by
+ this vector. The calculation assumes the pole at (0,1,0) and
+ returns the angles in X and Y.
+ */
+ vector3d<T> getSphericalCoordinateAngles() const
+ {
+ vector3d<T> angle;
+ const f64 length = X*X + Y*Y + Z*Z;
+
+ if (length)
+ {
+ if (X!=0)
+ {
+ angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
+ }
+ else if (Z<0)
+ angle.Y=180;
+
+ angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
+ }
+ return angle;
+ }
+
+ //! Builds a direction vector from (this) rotation vector.
+ /** This vector is assumed to be a rotation vector composed of 3 Euler angle rotations, in degrees.
+ The implementation performs the same calculations as using a matrix to do the rotation.
+
+ \param[in] forwards The direction representing "forwards" which will be rotated by this vector.
+ If you do not provide a direction, then the +Z axis (0, 0, 1) will be assumed to be forwards.
+ \return A direction vector calculated by rotating the forwards direction by the 3 Euler angles
+ (in degrees) represented by this vector. */
+ vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
+ {
+ const f64 cr = cos( core::DEGTORAD64 * X );
+ const f64 sr = sin( core::DEGTORAD64 * X );
+ const f64 cp = cos( core::DEGTORAD64 * Y );
+ const f64 sp = sin( core::DEGTORAD64 * Y );
+ const f64 cy = cos( core::DEGTORAD64 * Z );
+ const f64 sy = sin( core::DEGTORAD64 * Z );
+
+ const f64 srsp = sr*sp;
+ const f64 crsp = cr*sp;
+
+ const f64 pseudoMatrix[] = {
+ ( cp*cy ), ( cp*sy ), ( -sp ),
+ ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
+ ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
+
+ return vector3d<T>(
+ (T)(forwards.X * pseudoMatrix[0] +
+ forwards.Y * pseudoMatrix[3] +
+ forwards.Z * pseudoMatrix[6]),
+ (T)(forwards.X * pseudoMatrix[1] +
+ forwards.Y * pseudoMatrix[4] +
+ forwards.Z * pseudoMatrix[7]),
+ (T)(forwards.X * pseudoMatrix[2] +
+ forwards.Y * pseudoMatrix[5] +
+ forwards.Z * pseudoMatrix[8]));
+ }
+
+ //! Fills an array of 4 values with the vector data (usually floats).
+ /** Useful for setting in shader constants for example. The fourth value
+ will always be 0. */
+ void getAs4Values(T* array) const
+ {
+ array[0] = X;
+ array[1] = Y;
+ array[2] = Z;
+ array[3] = 0;
+ }
+
+ //! Fills an array of 3 values with the vector data (usually floats).
+ /** Useful for setting in shader constants for example.*/
+ void getAs3Values(T* array) const
+ {
+ array[0] = X;
+ array[1] = Y;
+ array[2] = Z;
+ }
+
+
+ //! X coordinate of the vector
+ T X;
+
+ //! Y coordinate of the vector
+ T Y;
+
+ //! Z coordinate of the vector
+ T Z;
+ };
+
+ //! partial specialization for integer vectors
+ // Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
+ template <>
+ inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
+ template <>
+ inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}
+
+ template <>
+ inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
+ {
+ vector3d<s32> angle;
+ const f64 length = X*X + Y*Y + Z*Z;
+
+ if (length)
+ {
+ if (X!=0)
+ {
+ angle.Y = round32((f32)(atan2((f64)Z,(f64)X) * RADTODEG64));
+ }
+ else if (Z<0)
+ angle.Y=180;
+
+ angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
+ }
+ return angle;
+ }
+
+ //! Typedef for a f32 3d vector.
+ typedef vector3d<f32> vector3df;
+
+ //! Typedef for an integer 3d vector.
+ typedef vector3d<s32> vector3di;
+
+ //! Function multiplying a scalar and a vector component-wise.
+ template<class S, class T>
+ vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
+
+} // end namespace core
+} // end namespace irr
+
+#endif
+
|
