1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
//
// Copyright 2018 Staysail Systems, Inc. <info@staysail.tech>
// Copyright 2018 Capitar IT Group BV <info@capitar.com>
//
// This software is supplied under the terms of the MIT License, a
// copy of which should be located in the distribution where this
// file was obtained (LICENSE.txt). A copy of the license may also be
// found online at https://opensource.org/licenses/MIT.
//
#ifndef CORE_MSGQUEUE_H
#define CORE_MSGQUEUE_H
#include "nng_impl.h"
// Message queues. Message queues work in some ways like Go channels;
// they are a thread-safe way to pass messages between subsystems. They
// do have additional capabilities though.
//
// Message queues can be closed many times safely.
//
// Readers & writers in a message queue can be woken either by a timeout
// or by a specific signal (arranged by the caller).
typedef struct nni_msgq nni_msgq;
// nni_msgq_init creates a message queue with the given capacity.
// (If the capacity is zero, then the queue is unbuffered.)
// It returns NNG_ENOMEM if resources cannot be allocated.
extern int nni_msgq_init(nni_msgq **, unsigned);
// nni_msgq_fini destroys a message queue. It will also free any
// messages that may be in the queue.
extern void nni_msgq_fini(nni_msgq *);
extern void nni_msgq_aio_put(nni_msgq *, nni_aio *);
extern void nni_msgq_aio_get(nni_msgq *, nni_aio *);
// nni_msgq_tryput performs a non-blocking attempt to put a message on
// the message queue. It is the same as calling nng_msgq_put_until with
// a zero time.
extern int nni_msgq_tryput(nni_msgq *, nni_msg *);
// nni_msgq_set_error sets an error condition on the message queue,
// which causes all current and future readers/writes to return the
// given error condition (if non-zero). Threads waiting to put or get
// are woken as well, if non-zero. If zero, then any present error
// condition is cleared, and waiters are not woken (there shouldn't be
// any waiters unless it was already zero.)
extern void nni_msgq_set_error(nni_msgq *, int);
// nni_msgq_set_put_error sets an error condition on the put side of the
// message queue, and for that side behaves like nni_msgq_set_error.
// Readers (nni_msgq_get*) are unaffected.
extern void nni_msgq_set_put_error(nni_msgq *, int);
// nni_msgq_set_get_error sets an error condition on the get side of the
// message queue, and for that side behaves like nni_msgq_set_error.
// Readers (nni_msgq_put*) are unaffected.
extern void nni_msgq_set_get_error(nni_msgq *, int);
// nni_msgq_set_best_effort marks the message queue best effort on send.
// What this does is treat the message queue condition as if it were
// successful, returning 0, and discarding the message. If zero is
// passed then this mode is reset to normal.
extern void nni_msgq_set_best_effort(nni_msgq *, int);
// nni_msgq_filter is a callback function used to filter messages.
// The function is called on entry (put) or exit (get). The void
// argument is an opaque pointer supplied with the function at registration
// time. The primary use for these functions is to support the protocol
// socket needs.
typedef nni_msg *(*nni_msgq_filter)(void *, nni_msg *);
// nni_msgq_set_filter sets the filter on the queue. Messages
// are filtered through this just before they are returned via the get
// functions. If the filter returns NULL, then the message is silently
// discarded instead, and any get waiters remain waiting.
extern void nni_msgq_set_filter(nni_msgq *, nni_msgq_filter, void *);
// nni_msgq_cb_flags is an enumeration of flag bits used with nni_msgq_cb.
enum nni_msgq_cb_flags {
nni_msgq_f_full = 1,
nni_msgq_f_empty = 2,
nni_msgq_f_can_get = 4,
nni_msgq_f_can_put = 8,
nni_msgq_f_closed = 16,
};
// nni_msgq_cb is a callback function used by sockets to monitor
// the status of the queue. It is called with the lock held for
// performance reasons so consumers must not re-enter the queue.
// The purpose is to enable file descriptor notifications on the socket,
// which don't need to reenter the msgq. The integer is a mask of
// flags that are true for the given message queue.
typedef void (*nni_msgq_cb)(void *, int);
// nni_msgq_set_cb sets the callback and argument for the callback
// which will be called on state changes in the message queue. Only
// one callback can be registered on a message queue at a time.
extern void nni_msgq_set_cb(nni_msgq *, nni_msgq_cb, void *);
// nni_msgq_close closes the queue. After this all operates on the
// message queue will return NNG_ECLOSED. Messages inside the queue
// are freed. Unlike closing a go channel, this operation is idempotent.
extern void nni_msgq_close(nni_msgq *);
// nni_msgq_resize resizes the message queue; messages already in the queue
// will be preserved as long as there is room. Messages that are dropped
// due to no room are taken from the most recent. (Oldest messages are
// preserved.)
extern int nni_msgq_resize(nni_msgq *, int);
// nni_msgq_cap returns the "capacity" of the message queue. This does not
// include the extra room for pushback, nor the extra slot reserved to make
// zero-length message queues possible. As a consequence, it is possible
// for the message queue to contain up to 2 more messages than the capacity.
extern int nni_msgq_cap(nni_msgq *mq);
// nni_msgq_len returns the number of messages currently in the queue.
extern int nni_msgq_len(nni_msgq *mq);
#endif // CORE_MSQUEUE_H
|